TECHNICAL SPECIFICATION №: I-ET-0000.00-0000-2						00-0000-24	A-P9U-00	I		
BR		CLIENT:			-			SH	eet: 1	of 14
PFTRO	OBRAS	JOB:			-					
727/10	DIAD	AREA:			-					
		TITLE:							EDD/	EDR
	-			RIGID SP	OOL STRU	ICTURAL I	DESIGN			
				INC	DEX OF RE	VISIONS				
REV.				DESCRIP	TION ANI	D/OR REV	/ISED SHE	ETS		
0	ORIGI	NAL								
А	Gener	al revisi	on.							
n	Corre		~ ~							
B	Gener	at revisi	on.							
		REV. 0	REV. A	REV. B	REV. C	REV. D	REV. E	REV. F	REV. G	REV. H
DATE	06	5/12/2017	23/11/2020	02/09/2022						
EXECUTION		UT6L	UT6L	UT6L						
			(172	(172						
THE INFORMA	TION CONTAI		CUMENT IS PETR	OBRAS PROPERTY	AND MAY NOT BE	USED FOR PURPO	SES OTHER THAN T	THOSE SPECIFICAL	LY INDICATED HER	EIN.
SPECIFICALLY	INDICATED H	EREIN. THIS FO	ORM IS PART OF PE	TROBRAS N-381 F	REV. M					

INTERNA \ Qualquer Usuário

		TECHNICAL SPECIFICAT	ION	N°:	-ET-0000.0	0-0000-24A-	P9U-001		REV.	B
	BR	JOB:					SHEET:	2	of	14
PE	TROBRAS		L STR	υστι	URAL DES	SIGN		EDD/F	DR	
								-		
		TABLE	OF C	CON	TENTS					
1	INTRODU	CTION								3
1.1	OBJECTIVE									3
1.2	SCOPE									3
1.3	DEFINITION	S AND ABREVIATIONS								3
2	PREMISS	ES								5
2.1	MASTER PF	OJECT COMPLIANCE								5
2.2	SCENARIOS	3								5
2.3	SPOOL CON	IFIGURATIONS								5
2.4	LOADS									6
3	ANALYSE	S								8
3.1	<mark>GLOBAL</mark> FIN	ITE ELEMENT MODEL								8
3.2	LOAD CASE	MATRIX								8
<mark>3.3</mark>	INDUCTION	BEND FINITE ELEMENT MOD	<mark>EL</mark>							8
4	DESIGN C	RITERIA								. 10
4.1	DESIGN CO	DES								. 10
4.2	ALLOWABLI	E INTERFACE LOADS								. 10
<mark>4.3</mark>		BENDS COMBINED LOADS A	SSESS	<mark>SMEN</mark>	T UNDER	EXTERNAL O)VERPR	<mark>ESSU</mark>	<mark>RE</mark>	. 10
5	DELIVER	ABLES								. 12
5.1	DESIGN PR	EMISES								. 12
5.2	FLEXIBILITY	REPORT								. 12
<mark>5.3</mark>		IAL CYCLING FATIGUE REPO	RT							. 12
<mark>5.4</mark>	VIV REPOR	<mark>r</mark>								. 13
6	ANNEX									. 14
7	REFEREN	CES								. 14

3

SHEET:

REV.

of

B

14

1 INTRODUCTION

1.1 OBJECTIVE

The present document presents the minimum scope and deliverables of subsea Rigid Spool (here referred to as Spool) structural design (here referred to as design).

1.2 SCOPE

This document addresses:

- The design of the Spool with respect to mechanical and fatigue resistance, comprising of all straight pipes, pipe bends, reductions and welds (including the welds with the connectors);
- The loads acting on all spool connections (mechanical connectors, flanges etc).

The following items may need to be properly accounted for in the Spool design activities, but their design is out of scope of this document:

- Connectors (mechanical connectors, flanges etc), connector pup-pieces, valves etc;
- Strakes, buoyancy modules, insulation, coating, anodes and any sort of accessory attached to the linepipes and pipe bends;

Concerning all aspects not specifically covered in the present document (e.g.: corrosion, corrosion protection, material choice, fragilization etc), CONTRACTOR must comply with the Master Project Specifications and contractual requirements.

This document does not address the Spool installation, which is covered in ref. [7].

CF	Cross-Flow
FSHR	Free Standing Hybrid Riser
IL	In-Line
LRTA	Lower Riser Termination Assembly
Master Project	Document which contains the Project basic technical
Specification	specifications
MEG	Mono-Ethilene Glicol
OD	Outside diameter
PLET	Pipeline End Termination
PLEM	Pipeline End Manifold
Project	Project addressed by the Master Project
	Specification
Rigid Spool	Assembly of rigid pipes and rigid pipe bends used to
	connect a subse pipeline to another subsea
	structure
SCF	Stress Concentration Factor

1.3 DEFINITIONS AND ABREVIATIONS

INTERNA \ Qualquer Usuário

Nº: **TECHNICAL SPECIFICATION** I-ET-0000.00-0000-24A-P9U-001 SHEET:

RIGID SPOOL STRUCTURAL DESIGN

REV.

of

B

14

Spool configuration	Spool geometric shape
Spool connection	Connection component welded to the spool end
	(Mechanical connectors, flanges etc)
System Pressure	Pressure test executed on the subsea pipeline
Test	system after the spool is connected.
Target Box	Area of uncertainty for the hub position prior to the
	structure installation
VIV	Vortex Induced Vibration

SHEET:

REV.

B

2 PREMISSES

JOB:

TITLE:

2.1 MASTER PROJECT COMPLIANCE

The Spool design must comply with the Master Project Specification in every aspect.

2.2 SCENARIOS

The Spool design must address at least the Project applicable scenarios specified below. It is worth noting that these scenarios may occur in a different order than presented here, and that the spool extremities displacement range considered for each must cover all possibilities throughout design life.

- As-Landed
- Empty
- System Pressure Test (see NOTE below)
- Operation scenarios (including the full range of steady flow conditions, transient conditions, shut-down, packing, shut-in, cleaning and maintenance operations and incidental operation)
- Accidental

Additional scenarios may be required (e.g. innertization, hibernation...), depending on the project installation procedure, operational characteristics, interface loads requirements, chosen design code or other reasons. It is CONTRACTOR's responsibility to identify all additional relevant scenarios for dimensioning and design verifications.

NOTE: Within this document, System Pressure Test comprises any kind of pressure test executed with the spool in-place. Such tests may be referred to as "Leak Test", "System Test" or similar terminology throughout the Project documentation. Such test conditions shall be included in the design scenarious even when the test execution is out of CONTRACTOR's scope of service. If there is any doubt concerning the System Pressure Test scenario, a Technical Query must be sent to PETROBRAS for clarification.

2.3 SPOOL CONFIGURATIONS

At least 3 configurations (Near-Near, Nominal and Far-Far) must be considered to cover Target Box uncertainties.

If fundamental changes in spool configuration and/or boundary conditions are expected in order to cover the Target Box uncertainties (e.g. soil contact or buoyance modules up from a certain hub-hub distance), more configurations may be required.

TECHNICAL SPECIFICATION	Nº:	I-ET-0000.00-0000-24A-P9U-001	REV.
100		SUFFT	

TITLE:

6 of

14

2.4 LOADS

CONTRACTOR must consider all applicable loads in design verifications for each scenario. The list below anticipates commonly expected loads to be accounted for, although it may not cover all possible loads. It is CONTRACTOR's responsibility to identify all applicable loads for each scenario.

- 2.4.1 Weight and buoyancy of spool and all its components (connectors included).
- 2.4.2 Misalignments: The Spool is expected to experience pre-stress from misalignments (linear and angular) due to fabrication and metrology tolerances / uncertainties. CONTRACTOR must encompass all possible combinations of misalignments and other loads.
- 2.4.3 Internal and External Pressure
- 2.4.4 Temperature (including the difference of temperature between fabrication, installation and operation)
- 2.4.5 Currents and Waves (Meteocean), including drag coefficient amplification due to VIV (DNV-RP-F105 [6] item 5.4)
- 2.4.6 End connections displacements:
 - 2.4.6.1 Pipeline axial displacements¹, see Figure 1;
 - 2.4.6.2 Structure settlements²;
- 2.4.7 Riser movements: spools connected to the base of a FSHR, riser tower or similar must consider the envelope of movements of these structures.
- 2.4.8 Dynamic and Inertia loads: There are cases in which Dynamic and Inertia effects may be significant, and Spool design must properly account for them by means of non-linear dynamic analyses. It is CONTRACTOR's responsibility to identify such cases, analyse and document accordingly. Special attention is brought to Spools connected to FSHR, which may experience dynamic coupling from LRTA movements.
- 2.4.9 VIV: the Spool design must consider VIV according to DNV-RP-F105 [6], with special attention to Appendix A, with the following amends:

2.4.9.1 The Fatigue damage calculation must account for the cyclic Axial, Bending and Torsional loads acting on the spool sections. Cyclic Principal Stresses must be considered (see DNV-RP-F105 Appendix A item A.8.5).

2.4.9.2 The partial safety factors associated to natural frequencies must be those associated with "Not Well Defined" classification (ref. [6] Table 2-3).

2.4.9.3 Sreening fatigue criteria (DNV-RP-F105 [6] item 2.4) is not accepted.

¹ Lower Bound to Upper Bound soil conditions shall be considered to determine maximum and minimum pipeline displacements. Cyclic effects (e.g.: walking) must also be taken into account.

² Lower Bound to Upper Bound soil conditions shall be considered to determine maximum and minimum differential settlements. If structures tilt is foreseen after spool connections the corresponding connector rotation and displacements must also be considered in the Spool design.

	TECHNICAL SPECIFICATION [№] I-ET-0000.00-0000-24A-P9	I-ET-0000.00-0000-24A-P9U-001				
BR	JOB:	Sheet: 7	of 14			
PETROBRAS		EDD/I	EDR			
		-				
2.4.	9.4 Extreme load analyses must consider drag coefficie	ent amplifi	cation			
des	cribed in DNV-RP-F105 [6] item 5.4 and VIV induced loads	. ha taka				
2.4. heid	9.5 The current and wave induced particle velocity mus	the point	n at a of the			
spo	ol under evaluation.					
<mark>2.4.</mark>	9.6 If any spool section's gap with the seabed is shorter	than 0.80	<mark>D, the</mark>			
gap	effect must be accounted for on added mass of this section	n (see DN	<mark>V-RP-</mark>			
2.4.10	nternal flow associated loads: the Spool design must	consider	loads			
a	associated with internal flow whenever applicable. Exam	ples are	slugs,			
r h	ammering forces, etc.					
24115	Spool-soil interaction: if the spool is expected to touch the s	eabed in n	ormal			
0	or ab-normal conditions, the Spool design must consider lo	oads asso	ciated			
v	vith soil interaction (e.g.: normal reaction, friction etc).					
As-laid	•					
Pipeline HT	•					
Post-HT ret	urn 🔴 The spool is usually	, installed l	here			
Operationa	l Expansion	0				
Operationa	l Retraction					
	Expected PLET axial	-				
	displacement range					
	for spool design					
Figure 1 – Exp	pected range of PLET axial displacement for spool design in typical inst pool is installed after the pipeline Hydrostatic Test (HT). The displacem	allation sequ	ience,			
illustrative with	respect to the proportion of displacements. Please note that Operation	nal Expansio	n and			
Retraction m	effects (e.g. Pipeline Walking).	ai, etc) and t	yclic			

JOB:

TITLE:

B

14

REV.

of

RIGID SPOOL STRUCTURAL DESIGN

8

SHEET:

3 ANALYSES

3.1 GLOBAL FINITE ELEMENT MODEL

The Spool configurations must be analysed through Finite Element (FE) models. The FE models must attend the following requirements:

- 3.1.1 The mesh must be sufficiently refined for the analyses purposes.
- 3.1.2 The load application steps must be coherent with the expected installation/operation sequence.
- 3.1.3 The model characteristics must be conservative with respect to the calculation of loads along the Spool and interface loads.
- 3.1.4 Fabrication/metrology misalignments must be applied as prescribed displacements/rotations on the connectors.
- 3.1.5 The connectors must be modelled as rigid components with due dimensions and mass. The connector pip-piece must be modeled as a pipe with its own characterisitics.

3.2 LOAD CASE MATRIX

The following load case matrix must be applied to every Spool configuration. This load case matrix constitutes a minimum scope; additional cases may be necessary depending on the Project particularities.

3.3 INDUCTION BEND FINITE ELEMENT MODEL

The 3D FE model for induction bends assessment described in item 4.3 must attend the following requirements:

- 3.3.1 The geometry must consider the post-bending extrados bend thinning and section ovality;
- 3.3.2 The geometry must not consider the post-bending intrados bend thickening unless the induction bends MPQT and ITP control this parameter;
- 3.3.3 The mesh must be built with 3D solid elements;
- 3.3.4 The model must consider geometric non-linearities (large displacements and rotations);
- 3.3.5 The mesh must consider elasto-plastic material behavior with lower bound resistance.
- 3.3.6 The bend 3D model extension (e.g. tangent length) must be coherent with where the loads from the global model will be extracted.

JOB:

TITLE:

RIGID SPOOL STRUCTURAL DESIGN

9

SHEET:

REV.

of

B

14

		Table	1 – Load Case	Matrix				
	Parameters (Notes 1, 2)							
Scenario	Internal Internal Fluid Pressure Weight		Temperature	Differential Pipeline End Displacement (Note 3)	Differential Settlement Between Structures	Fabrication & Metrology tolerances / uncertainties (Note 7)		
As-Landed	Applicable	Applicable	ambient	zero	min./max.	all combinations		
Empty	zero	zero	ambient	zero/max. (Note 4)	min./max.	all combinations		
Flooded	Column	water filled	ambient	zero/max. (Note 4)	min./max.	all combinations		
<mark>System</mark> Pressure Test	Test Pressure	water filled	ambient	zero/max.	min./max.	all combinations		
Operation (Notes 5, 6)	min./max.	Associated to pressure and temperature	min./max.	min./max.	min./max.	all combinations		
Incidental (Note 6)	incidental	Associated to pressure and temperature	Zero/design	min./max.	min./max.	all combinations		
Accidental	min./max.	Associated to pressure and temperature	min./max.	min./max.	min./max.	all combinations		

Notes:

1) All combinations of the applicable environmental loads (Hydrodinamic loads and Riser movements) shall be included in the load case matrix.

- All columns shall be considered as independent parameters unless it is explicitly defined here as associated. E.g.: For Flooded Scenarion, the following combinations of Structures displacement Range and Differential Settlement Range must be considered: (zero; min.), (zero; max.), (max.; min.), (max; max).
- Minimum differential end displacements must be the minimum of all calculated values and zero. Maximum differential end displacements must be the maximum of all calculated values and zero.
- Unless residual differential pipeline end displacements are calculated for the post System
 Pressure Test Empty and Flooded conditions, the maximum value adopted shall be the same one
 from System Pressure Test condition.
- 5) Min./max. values shall consider all operational profiles, including transients, Shut-down, Shut-in, packing, cleaning and maintenance operations etc.
- 6) For pipelines that operate with different fluids, different sets of operation load cases shall be define for each fluid.
- 7) The linear and angular misalignments to be considered must cover at least the interval defined by the acceptance interval for deviation of a dimensional control measurement from the corresponding field measurement plus the interval defined by ± 3 times the Combined Standard Uncertainty (defined in [8]) of the measurements (field and dimensional control).

_

4 DESIGN CRITERIA

4.1 DESIGN CODES

Table 2 specifies the codes that must be used for the Spool design. The most recent issues of each code must be used.

Component	Code	
Component	Mechanical Resistance	Fatigue
Straight Pipes	DNV-ST-F101	
Induction Bends	 (either one of the following) DNV-ST-F101 (Section for Alternative Allowable Stress Design for Induction Bends)* ASME VIII Div. 2 ASME B31.8 / ASME B31.4, as applicable, plus section 4.3 below. 	DNV-ST-F101 + DNV- RP-C203
Diameter reduction	To be agreed with COMPANY	To be agreed with COMPANY
*All checks with thinning.	DNV-ST-F101 section 5.6.2 criterion must	consider wall thickness

Table 2 – Design Codes

4.2 ALLOWABLE INTERFACE LOADS

The Spool design must meet the restrictions on the connection loads (allowable loads on the connectors, flanges, structures etc).

4.3 INDUCTION BENDS COMBINED LOADS ASSESSMENT UNDER EXTERNAL OVERPRESSURE

As an alternative to DNV-ST-F101 item 5.6.2 criteria validity limitations or ASME VIII Div. 2, 3D FE analysis may be used to assess the bend resistance to combined loads, verifying if it withstands the design loads This is considered fulfilled if the FE bend model does not fail (i.e. no excessive section deformation and loads can be further increased) under the load combination described as follows.

The external pressure $p_{ext,FE}$ must be applied so that the difference between external and internal pressure ($p_{ext} - p_{int}$) is multiplied by a safety factor of $\gamma_m \cdot \gamma_{SC,LB}$:

 $p_{ext,FE} - p_{int,FE} = \gamma_m \cdot \gamma_{SC,LB} \cdot (p_{ext} - p_{int})$

 $p_{ext,FE}$ = external pressure applied in the FE model

 $p_{int,FE}$ = internal pressure applied in the FE model

p_{int}= actual internal pressure

	TECHNICAL SPECIFICATION	^{№:} I-ET-0000.00-0000-24A-P9	9U-001	^{rev.} B				
BR	JOB:		sheet: 11	of 14				
PETROBRAS			EDD/	EDR				
		UCTURAL DESIGN	-					
p_{ext} = actual e	external pressure							
$\gamma_m, \gamma_{SC,LB}$: def	fined in DNV-ST-F101 section 5							
······								
The design f	orces and moments at bend end	ds generically referred to	as P_{ab} m	ust he				
applied on th	e FE model multiplied by the equ	vivalent safety factor $\gamma_m \cdot \gamma$	s_{SCLR} as foll	ows:				
	$P_{\text{RR}} = \gamma_{\text{RR}} \cdot \gamma$							
Whore:	[*] EF, ITMT.	<u>50,LB * 5a,l</u>						
	former an anomal company of	alaulated as new DNIV/OT		470				
P _{Sd,i} = design Design Load	Fffect	alculated as per DINV-51	-F101 Item	4.7.3				
$\frac{D}{D} = force of$	r moment component applied on	the EE model $i = 1.2.2$						
$F_{EF,i}$ = 10100 0		The FE model, $i = 1,2,3$						
$\gamma_m, \gamma_{SC,LB}$: det	rined in DNV-ST-F101 section 5							
The P _{Sd,i} load	components picked for 3D FE	analyses must cover al	l loads fro	<mark>m the</mark>				
spool global	analyses. This must be clearly de	emonstrated in graphs and	l/or tables.					
FE model red	quirements for this analysis are g	iven in section 3.3.						

REV.

B

EDD/EDR

SHEET:

5 DELIVERABLES

5.1 DESIGN PREMISES

JOB:

TITLE:

CONTRACTOR must provide a Spool Design Premisses Report for previous approval, containing all premises and criteria for Spool design, adequately referenced.

The Spool Design Premisses Report must contain a detailed load case matrix clearly showing the applied loads for each scenario.

5.2 FLEXIBILITY REPORT

CONTRACTOR must provide a Flexibility Report demonstrating that the Spool design complies with contractual, code and interface loads requirements.

The Design Report minimum content comprises:

- 5.2.1 Spool sketch(es) / drawing(s) showing all coordinate systems used in the analyses and report of results (specially interface loads);
- 5.2.2 Reference to issued drawing(s) of the considered Spool configurations showing all relevant design data;
- 5.2.3 Detailed input and output file(s) in editable format (.csv, .txt, .xls, .xlsx or equivalent) containing complete lists of input parameters and analysis outputs for each Spool Configuration and evaluated Scenario. The files must follow the template provided in Annex 1. Inputs and outputs provided only in image or pdf format will not be accepted;
- 5.2.4 Tables with resumed outputs (maximum criteria checks, maximum loads etc) identifying which cases are being informed, and graphs containing unity check distribution for most relevant cases (also identified).
- 5.2.5 End connector load coordinate systems and convention: The connector loads must be informed at the Hub faces/Flange faces. The coordinate system and sign convention for load report (loads acting on the structure or acting on the spool) must also be clearly reported.
- 5.2.6 Other auxiliary calculation spreadsheets.

5.3 OPERATIONAL CYCLING FATIGUE REPORT

CONTRACTOR must provide an Operational Cycling Fatigue Report demonstrating that the Spool design complies with contractual and code fatigue requirements.

The Design Report minimum content comprises:

- 5.3.1 Spool sketch(es) / drawing(s) showing all coordinate systems used in the analyses and report of results (specially interface loads);
- 5.3.2 Reference to issued drawing(s) of the considered Spool configurations showing all relevant design data;

INTERNA \ Qualquer Usuário

	TECHNICAL SPECIFICATION	^{№:} I-ET-0000.00-0000-24A-P9	U-001	B			
	ЈОВ:		SHEET: 13 of	14			
BR	TITLE:						
PETROBRAS RIGID SPOOL STRUCTURAL DESIGN EDD/EDR - -							
<mark>5.3.3</mark>	Fatigue stress histograms and da	amage at each weld;					
<mark>5.3.4</mark>	End connection cyclic loads;						
<mark>5.3.5</mark>	SCF calculations;						
<mark>5.3.6</mark>	Other auxiliary calculation spread	<mark>lsheets.</mark>					
5.4 VIV R	EPORT						
CONTRAC ⁻	TOR must provide a VIV Repo	ort demonstrating that the	<mark>e Spool desig</mark>	<mark>յո</mark>			
<mark>complies wi</mark>	th contractual and code requireme	ents concerning VIV.					
The VIV Re	port minimum content comprises:						
<mark>5.4.1</mark>	Spool sketch(es) / drawing(s) sh	nowing all coordinate syste	ems used in th	ne			
	analyses and report of results;						
<mark>5.4.2</mark>	Reference to issued drawing(s)) of the considered Spoc	ol configuration	<mark>าร</mark>			
	showing all relevant design data;						
<mark>5.4.3</mark>	Vibration mode classification as I	L/CF/both depending on th	e the spool "le	g"			
	and flow direction (see DNV-RP-	F105 Appendix A item A.4)	;				
<mark>5.4.4</mark>	VIV fatigue damage per mode	and total for all contribut	ing modes. Fo	or			
	modes that can be considered a	as both IL and CF, it must	be evident the	at			
	the highest damage was conside	red;					
5.4.5	VIV Fatigue stress histograms an	id damage at each weld;					
<mark>5.4.6</mark>	Other auxiliary calculation spread	Isheets.					

	TECHNICAL SPECIFIC	CATION	^{№:} I-ET-000	0.00-0000-24A-P9	9U-001	^{rev.} B
BR	JOB:				SHEET: 14	1 of 14
PETROBRAS				ESIGN	EDD	/EDR
						-
6 ANNEX						
Annex 1		CONTR	ACTOR mu	st include one	file per	Spool
Input_Outpu	ut_Template= <mark>B</mark> .xlsx	configura	ation / scer	nario following	this tem	plate.
	<u> </u>	template	to specific	project particul	arities.	
7 REFEREI	NCES					
[1] DNV-ST-	F101. Submarine Pipel	ine Svste	ms			
[2] ASME B	oiler and Pressure Ves	sel Code `	VIII - Divisio	n 2		
[3] DNV-RP-	C203. Fatique Design (of Offshor	e Steel Stru	ctures		
[4] ASME B3	31.8. Gas Transmission	and Dist	ribution Pipir	na Svstems		
[5] ASME B	31.4. Pipeline Transpo	rtation Sv	stems for I	iquid Hydrocar	bons and	d Other
Liquids	,					
[6] DNV-RP-	F105. Free Spanning F	Pipelines				
[7] I-ET-000	0.00-0000-966-P9U-00	1. Installa	tion Analysis	5		
[8] ISO/IFC	Guide 98-3:2008. Und	certainty of	of measurer	ment — Part	3: Guide	to the
expressio	on of uncertainty in mea	surement	(GUM:1995	5)		
				- /		