	TECHNICAL SPECIFICATION No. I-ET-3000.00-1519-29B-PZ9-004										
ER petrobras		CLIENT				1			SHEET	1 of	34
		JOB:								-	
PETRO	BRAS	AREA:							<u> </u>		
		TITLE:								NP-1	
SUB/ES/E	EISE/ED)F	LOAD-	EFFECT AN	NALYSIS	OF SUBSE		CALS	SUB		SE/EDF
									508/		
				IND	EX OF R	EVISIONS	6				
REV.				DESCRIP	TION AN	D/OR RE\	ISED SHI	EETS			
0	Origir	nal (this	specificatio	n replaces f	ormer I-E	T-3010.00-	1500-960-P	PC-008 R	ev. B)		
А	Divisio	on of the	e temporary	mooring co	onditions ir	n 2 (two) sp	ecific condi	itions: "Pul	I-in" an	d "Firs	t oil"
			- •	-							
							· _ ·				
DATE		REV. 0 4/10/2019	REV. A 30/03/2021	REV. B	REV. C	REV. D	REV. E	REV. F	REV	. G	REV. H
DATE		4/10/2019 B/ES/EISE/EDF	SUB/ES/EISE/EDF								
EXECUTIO		CJME	CJME								
CHECK			UPOV								
		BEIW		PETROBRAS, BEIN							
FORM OWNED				LINODINO, DEIN	ST NOTIBITED		LINT ONE USE				

	TECHNICAL SPECIFICATION I-ET-	3000.00-1519-29B-PZ9-004	1
BR		SHEET 2 of 3	4
PETROBRAS		NP-1	
12111021140	LOAD-EFFECT ANALTSIS OF SUBSEA	SUB/ES/EISE/EDF	=

INDEX

1	Sco	ре	3
2	Refe	erences	3
	2.1	International standards	3
	2.2	PETROBRAS specifications	3
3	Terr	ms & definitions, abbreviated terms and mathematical symbols	3
	3.1	Terms and definitions	3
	3.2	Abbreviated terms	4
	3.3	Mathematical symbols	4
4	Doc	cumentation	5
	4.1	Design Premises Report	5
	4.2	Design Report	5
5	Extr	reme-load analysis	5
	5.1	Load combinations and conditions	5
		5.1.1 Design load cases	6
		5.1.2 Verification load cases	6
	5.2	Global analysis	7
		5.2.1 Design load cases global analysis	10
		5.2.1.1 Bend stiffener design	18
		5.2.2 Verification load cases global analysis	19
		5.2.2.1 Pull-in with temporary mooring system	19
		5.2.2.2 First oil with temporary mooring system	19
		5.2.3 Extreme-load global analysis input and output tables	23
	5.3	Structural analysis	24
		5.3.1 Design load cases structural analysis	25
		5.3.2 Verification load cases structural analysis	
		5.3.2.1 Pull-in with temporary mooring system	
		5.3.2.2 First oil with temporary mooring system	
6	Fati	igue analysis	29
7	On-l	bottom stability analysis	29
8	Inte	rference analysis	30
Ap	pend	dix A – Motion Analysis	31
Ap	penc	dix B – Wave Modelling Procedures	

	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
ER petrobras			^{SHEET} 3	of 34
			NP-1	I
			SUB/ES/EISE/ED	

1 Scope

This technical specification establishes the minimum requirements for the load-effect analysis of static and dynamic subsea umbilicals during installation and operating life phases. SUPPLIER is responsible to identify all hazards and define additional load cases to mitigate them based on risk assessment. The load conditions and methodologies specified herein for the design of dynamic subsea umbilicals are applicable to risers in free hanging and deep-water lazy wave configurations. The adoption of other configurations can be accepted upon request to PETROBRAS, but additional conditions might be necessary.

SUPPLIER shall investigate the particular cases where geometric parameters, deformations and/or stresses are relevant for the design of the subsea umbilical, and the whole set of analysis inputs and results shall be submitted to PETROBRAS. The required scope of global and structural analysis load cases for strength calculations of subsea umbilicals shall include the following: (i) the scope based on SUPPLIER experience regarding loading combinations; (ii) the scope based on PETROBRAS experience, as hereafter specified.

2 References

NOTE: Unless otherwise stated, the latest revision of the following documents must be considered.

2.1 International standards

- [1] ISO 13628-5, Petroleum and natural gas industries Design and operation of subsea production systems Part 5: Subsea umbilicals
- [2] API RP 17L2, Recommended Practice for Flexible Pipe Ancillary Equipment
- [3] DNVGL-RP-F109, On-bottom stability design of submarine pipelines

2.2 PETROBRAS specifications

- [4] I-ET-3000.00-1519-29B-PZ9-003, Subsea umbilical systems
- [5] I-ET-3010.00-1519-274-PPC-001, Riser Interference Analysis

3 Terms & definitions, abbreviated terms and mathematical symbols

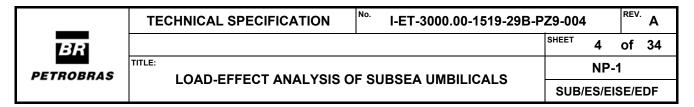
PETROBRAS adopts the same terms, abbreviated terms and definitions as in [1], with the amendments and supplements defined in this section.

3.1 Terms and definitions

fluid conduits

thermoplastic hoses and metallic tubes within a subsea umbilical

may


verbal form used to indicate a course of action permissible within the limits of this specification

metocean

meteorology and oceanography

shall

verbal form used to indicate requirements strictly to be followed in order to conform to this specification

should

verbal form used to indicate that a provision is not mandatory, but is recommended as good practice

structural components

components responsible to sustain the tensile loads in a subsea umbilical. Typical ones are steel wires, metallic tubes and fiber-reinforced plastic rods

SUPPLIER

subsea umbilical supplier

3.2 Abbreviated terms

- AIP atmospheric internal pressure
- CoM center of motion
- DoF degree of freedom
- EOL end of life
- FPSO floating, production, storage, offloading
- FPU floating production unit
- Max maximum
- Min minimum
- MPM most probably maximum
- RP return period
- SOL start of life
- SS semi-submersible
- TDP touchdown point
- UTS ultimate tensile strength
- VLS vertical laying system
- WD water depth

3.3 Mathematical symbols

- H regular wave height
- Hmax maximum regular wave height
- Hs significant wave height
- PMAX MPM amplitude for pitch
- R_{MAX} MPM amplitude for roll
- T regular wave period
- Tp peak period
- T_{top} top tension
- a angle between the riser and the bend stiffener neutral axis
- kp pseudo-curvature
- θ angular motion

	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P	[/] Z9-004	REV. A	
BR			^{SHEET} 5	of 34	4
PETROBRAS		LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS		-1	
	LOAD-LITEOT ANALTSIS O			ISE/EDF	;

4 Documentation

4.1 Design Premises Report

Prior to the commencement of the load-effect analysis, SUPPLIER shall issue a Design Premises Report to PETROBRAS with the minimum content described in [4]. Starting the analysis without PETROBRAS approval is performed at SUPPLIER's own risk.

4.2 Design Report

After the completion of the load-effect analysis, all the information raised in the course of the analysis shall be gathered and compiled in a Design Report to be sent for PETROBRAS evaluation and approval. The minimum content of the Design Report is described in [4].

Note: Design Reports generated under the scope of a qualification process shall disregard the following items described in [4]:

- reference to material requisition
- termination and ancillary equipment drawings
- termination and ancillary equipment calculations design
- termination and ancillary equipment cathodic protection calculations

5 Extreme-load analysis

5.1 Load combinations and conditions

The subsea umbilical shall be designed and verified under functional, environmental, and accidental load combinations, as per [1]. The extreme-load conditions that shall be analyzed are normal operation, abnormal operation, and temporary conditions.

Extreme-load analysis cases shall be numerically simulated for the purpose of investigating and checking integrity, geometry, and stability of the umbilicals. Extreme-load analysis results provide the input for structural analysis to determine if the umbilical capacity and utilization factors are not exceeded under specified load conditions. Examples of main concerns are over tensioning of the umbilical section at the top connection, over bending at the TDP and crushing loads effects during installation.

Besides the prediction of utilization factors for the structural analysis load cases specified on sections 5.3.1 and 5.3.2, extreme-load analysis results shall be compared with the properties and allowable loads of the umbilical, and any undesired result such as over bending or any load combination outside the adequate capacity curve shall be clearly identified.

In order to adequately assess umbilical utilization factors considering all failure modes, critical sections have to be evaluated in relation to axial tension or compression and bending radius worst combinations. For the TDP region, improved accuracy of the global analysis results is required considering the severe influence of relevant parameters, such as temperature and contact pressures, on the umbilical mechanical properties. As these parameters vary along the riser, it is necessary to divide the umbilical riser (or flowline during installation) into some segments in order to represent different section properties. For each segment, all relevant parameters and equivalent section properties shall be informed. Nonlinear behaviors like, for instance, the stick-slip effects in the

	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
ER petrobras			^{SHEET} 6	of 34
			NP	-1
	LOAD-LITEOT ANALTSIS O	LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS		ISE/EDF

armors layers which cause hysteretic bend behavior and nonlinear polymeric stiffness, can be used and the data dully informed in the Design Premise.

The Design Premise elaborated by the SUPPLIER shall specify a load case matrix, which shall include at least the load cases presented in Table 1 and Table 2.

5.1.1 Design load cases

The aim of the design load cases is to reproduce extreme-load conditions that the subsea umbilical might be subjected during installation and long-term operation. Design load cases stated in_Table 1_are considered as a minimum for the design of a subsea umbilical and its ancillary equipment.

Load	Decign Cooo	Load Type			
Condition	Design Case	Functional	Environmental	Accidental	
Normal Operation	A – DWP & intact mooring system	Fluid Conduits full at DWP, Interstices flooded, FPU intact mooring system	100-year RP environmental conditions	-	
	B – DWP & one mooring line broken	Fluid Conduits full at DWP, Interstices flooded	100-year RP environmental conditions	FPU with one mooring line broken	
Abnormal Operation	C – DWP & buoyancy modules losses over service life ⁽¹⁾	Fluid Conduits full at DWP, Interstices flooded, FPU intact mooring system	100-year RP environmental conditions	Buoyancy modules losses ⁽²⁾	
	D – DWP & FPU inclination	Fluid Conduits full at DWP, Interstices flooded, FPU intact mooring system	1-year RP environmental conditions	FPU inclination due to a compartment flooding	
Temporary Conditions	E – AIP & installation vessel	Fluid Conduits full at AIP, Interstices flooded	1-year RP environmental conditions	-	

Table 1 - Design lo	ad cases
---------------------	----------

(1) This design load case applies only when SUPPLIER proposes a deep-water lazy wave configuration

(2) The buoyancy modules losses shall be defined according to [2]

5.1.2 Verification load cases

Temporary mooring conditions might happen during the production system installation phase, when the FPU can be held in position for a relatively short period by a mooring pattern different from the permanent system, designed to moor the FPU for the whole service life. Under this temporary condition, the risers will be subjected to offsets greater than those expected for the operational conditions, but with reduced environmental loads. The temporary conditions to be analyzed are:

- Pull-in with temporary mooring system and
- First oil with temporary mooring system

The aim of the verification load cases on Table 2 is to reproduce such conditions.

	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
BR petrobras			^{SHEET} 7	of 34
			NP	-1
	LOAD-EFFECT ANALTSIS O	F SUBSEA UNIDILICALS	SUB/ES/E	ISE/EDF

The design premises and specified load cases for temporary mooring conditions shall not be used for configuration or structural design, neither for subsea umbilical and/or ancillary equipment dimensioning, <u>they are intended for verification only</u>. Nevertheless, SUPPLIER shall inform if all design criteria were met in these temporary mooring conditions, providing the components utilization factors in the Design Report.

Load Condition		Varification Case	Load Type			
		Verification Case	Functional	Environmental	Accidental	
	Pull-in	F – AIP & intact temporary mooring system	Fluid Conduits full at AIP, Interstices flooded, FPU intact temporary mooring system	1-year RP environmental conditions	-	
Temporary	First oil	G – DWP & intact temporary mooring system	Fluid Conduits full at DWP, Interstices flooded, FPU intact temporary mooring system	10-year RP environmental conditions	-	
Conditions		H – DWP & one mooring line broken	Fluid Conduits full at DWP, Interstices flooded FPU damaged temporary mooring system	10-year RP environmental conditions	FPU with one mooring line broken	
		I – DWP & buoyancy modules losses over service life ⁽¹⁾	Fluid Conduits full at DWP, Interstices flooded, FPU intact temporary mooring system	10-year RP environmental conditions	Buoyancy modules losses ⁽²⁾	

Table 2 - Verification load cases

(1) This verification load case applies only when SUPPLIER proposes a deep-water lazy wave configuration

(2) The buoyancy modules losses shall be defined according to [2]

5.2 Global analysis

The global analysis tables herein presented are related to one single riser. The design of one specific riser or a group of risers (when SUPPLIER is supplying a group of risers for the same FPU, with the same functional and system requirements) shall adopt one of the following procedures, depending on PETROBRAS technical documentation:

(i) Riser connected to any possible platform connection point with any possible azimuth

According to the type of the platform and the mooring system, the following shall be considered:

• Ship shape unit with turret moored system – eight different connection points and riser azimuths shall be considered, being each one 45° apart from the other as shown in Figure 1;

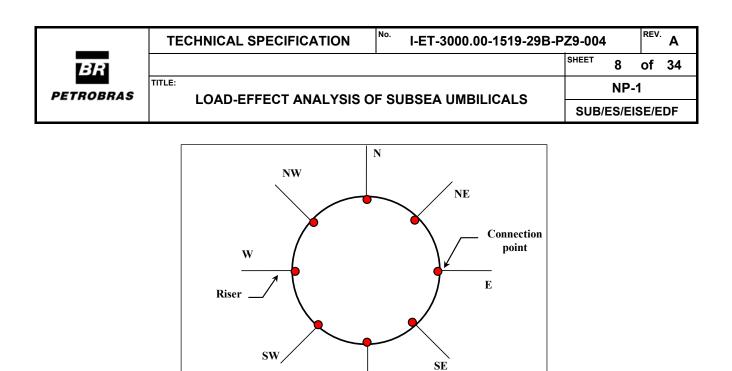


Figure 1 - Connection points and riser azimuths for turret moored systems

S

 Ship shape unit with spread mooring system – two connection points and ten different riser azimuths shall be considered as shown in Figure 2: one perpendicular to the platform side, and the others ±22.5° and ±45° apart from it, the same applies for keel hauling risers. The connection points shall be forward and backward from midship along the balcony, if applicable. The worst connection points shall be selected and properly justified.

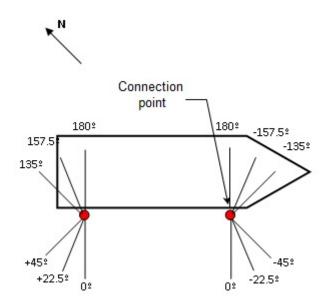


Figure 2 - Connection points and riser azimuths for ship shape units with spread mooring system

• SS unit – three different riser azimuths shall be considered at each side of the platform as shown in Figure 3: one perpendicular to the platform side, and the others ±45° apart from it. At each side, the worst connection point shall be selected and properly justified.

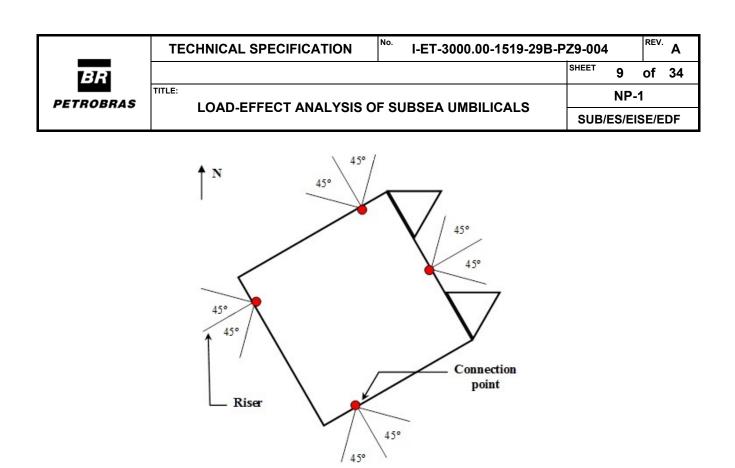


Figure 3 - Connection points and riser azimuths for SS units

(ii) Riser connected to the actual connection point with its actual azimuth defined by the subsea layout and PETROBRAS technical documentation

In case of several risers with the same properties but different azimuths and connection points in the same FPU, SUPPLIER can present the results for the risers with most critical combinations of azimuth and connection point, considering their impact to the umbilical integrity (e.g. level of stress/strain), geometry, and stability. The selection shall be properly justified and confirmed with some spot check analysis. Output results of the global analyses shall be condensed in summary tables and submitted to PETROBRAS for approval.

The following notes shall be observed for all load cases stated in sections 5.2.1 and 5.2.2:

1. The wave modeling procedures described on Appendix B are applicable for all load cases, including the installation load cases.

2. The wave data for the directions (e.g. N, NE etc.) presented in PETROBRAS metocean technical documentation closest to load case wave direction shall be chosen. If the load case wave direction is exactly on between two wave data [e.g. 22.5° from N, or 11.25° from N if 16 (sixteen) directions are available], the one with the largest significant wave height shall be selected.

3. The current profile for the directions (e.g. N, NE etc.) presented in PETROBRAS metocean technical documentation closest to load case current direction shall be chosen. The entire current profile shall be rotated, based on its surface direction, in order to match the load case current direction. If the load case current direction is exactly on between two current data [e.g. 22.5° from N, or 11.25° from N if 16 (sixteen) directions are available], the one with the largest surface current velocity shall be selected.

4. Current profile may be truncated if the WD is shallower than the profile presented in PETROBRAS metocean technical documentation or may be expanded, repeating the last current direction and velocity if the WD is greater.

5. Maximum top tension means maximum effective tension at the top connection region. Maximum TDP tension means maximum effective tension at the TDP region. Minimum TDP tension means minimum effective tension at

	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
ER Petrobras			^{sheet} 10	of 34
		NP-1		
	LOAD-EFFECT ANALTSIS	LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS		SE/EDF

the TDP region or, if any riser section is under effective compression, it means maximum effective compression at that section.

6. If other values are not specified by PETROBRAS, installation and positioning errors of 1.5% of WD and 7.5 m, respectively, shall be considered on the total FPU offset.

7. If SUPPLIER proposes a deep-water lazy wave configuration, it shall be verified for both the SOL and the EOL conditions of the buoyancy modules.

5.2.1 Design load cases global analysis

Global analysis of Design Load Case A shall include at least the load cases listed in Table 3. The motion analysis described in Annex A shall be used for selection of the wave parameters and FPU draft (any other procedure has to be formally accepted by PETROBRAS). The purpose of load cases GA-17 to GA-20 is to consider a swell condition based on PETROBRAS operational experience [see note (3) of Table 3].

Global analysis of Design Load Case B shall include at least the load cases listed in Table 4. These load cases are generated taking into consideration the results of the global analysis of Design Load Case A, according to the specified in Table 4 (e.g. maximum top tension, maximum curvature etc.). The load cases in Table 4 shall consider the same FPU draft and environmental loads of the original load cases from Table 3, but with a higher offset value due to the damaged mooring system. If the original load case is from GA-01 to GA-16, then the offset for the load case in Table 4 is 100-year RP, damaged mooring. If the original load case is from GA-17 to GA-20, then the offset for the load case in Table 4 is 1-year RP, damaged mooring.

Global analysis of Design Load Case C shall include at least the load cases listed in Table 5. These load cases are generated taking into consideration the results of the global analysis of Design Load Case A, according to the specified in Table 5 (e.g. maximum top tension, maximum curvature etc.). The load cases in Table 5 shall consider the same FPU draft, FPU offset and environmental loads of the original load cases from Table 3, however considering the buoyancy losses as defined in Table 1.

Global analysis of Design Load Case D shall include at least the load cases listed in Table 6. These load cases are generated taking into consideration the results of the global analyses of Design Load Case A, according to the specified in Table 6 (e.g. maximum top tension, maximum angle etc.). The load cases in Table 6 shall consider 1-year RP environmental loads applied on the same directions of the original load cases from Table 3. The offset shall be 1-year RP, intact mooring. FPU inclination due to compartment flooding shall be applied on the longitudinal axis for ship shape unit and on the diagonal for semisubmersible. An angle of inclination of 10° (ten degrees) for ship shape unit and 15° (fifteen degrees) for SS or other units shall be adopted if it is not specified on PETROBRAS project-specific documentation. This load case shall be considered to check the integrity of the umbilical and not to be used to size the bend stiffener or other ancillary equipment (loss of functionality is not acceptable, but no strain limitation in the bend stiffness is required).

Global analysis of Design Load Case E shall include at least the load cases listed in Table 7. These load cases consider the umbilical (riser or flowline) connected to the installation vessel. A screening analysis shall be performed for selection of the wave period and installation vessel draft, regarding the fact that the wave height is already defined on Table 7. The effect of different lay azimuths shall be considered on the global analysis. If only one azimuth is considered, SUPPLIER shall prove by some spot check calculations that this azimuth is the worst one. Global analysis of Design Load Case E shall be performed considering the departure angles of 1° (one degree) and 3° (three degrees) with relation to the vertical. The purpose of Design Load Case E is to assure the installation feasibility of the subsea umbilical and its ancillary equipment, besides determining stresses and strains on the structural components of the subsea umbilical and the respective utilization factors.

	TECHNICAL SPECIFICATION	^{№.} I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
BR			^{Sheet} 11	of 34
PETROBRAS		NP-1		
	LOAD-EFFECT ANALTSIS O	F JUDJEA UMIDILICALJ	SUB/ES/EI	SE/EDF

Regarding the load cases on Table 7, if design criteria are not met for one or more wave direction (head seas, quartering seas or beam seas) considering the specified wave height [H (m)] and period (6 to 15 s), then, for this(these) wave direction(s), global analysis shall be performed again considering annual wave spectra (Hs and Tp taken from the applicable PETROBRAS metocean technical specification), where Hs shall be limited to the following values: head seas = 4.5 m, quartering seas = 4.0 m e beam seas = 3.2 m. If design criteria are still not met, then Hs shall be decreased (applying the previous procedure again) until the analysis finally succeeds. SUPPLIER shall explain this course of actions on the Design Report and clearly state the maximum allowable Hs according to its analysis.

		Function				ad	Enviror				
Load Case	Position	FPU	FPU He relative to incidence	the wave		FPU offset		Wave		Current	Reference Figure
		Draft	FPSO Turret (Fig. 4)	Others	RP	Direction ⁽²⁾	RP	Direction	RP	Direction	
GA-01	Near					0º from the riser plane					Fig. 5 (a)
GA-02	Far					180º from the riser plane	ar		ar		Fig. 5 (b)
GA-03	Crossed					± 45° (cross near) and ± 135° (cross far) from the riser plane	100-year	Collinear	10-year	Collinear	Fig. 6 (a)
GA-04	Transverse	se ⁽¹⁾	Head			± 90° from the riser plane					Fig. 6 (b)
GA-05	Near	d ca:	seas			0º from the riser plane					Fig. 5 (a)
GA-06	Far	ach loa				180º from the riser plane	ar		ear		Fig. 5 (b)
GA-07	Crossed	Draft with the worst vertical acceleration and angular motion for each load case $^{(1)}$			100-year, intact mooring	± 45° (cross near) and ± 135° (cross far) from the riser plane	10-year	Collinear	100-year	Collinear	Fig. 6 (a)
GA-08	Transverse	r mot			tact r	± 90° from the riser plane					Fig. 6 (b)
GA-09	Near	igula		D	ar, in	0º from the riser plane					Fig. 7 (a); (b)
GA-10	Far	nd ar		eadin)0-ye	180º from the riser plane	ar	Crossed	ar	Crossed	Fig. 8 (a); (b)
GA-11	Crossed	eration a	22.5° from bow	Actual Heading	10	± 45° (cross near) and ± 135° (cross far) from the riser plane	100-year	± 22.5 of the riser	10-year	± 45 of the wave	Fig. 9 (a); (b), Fig. 10 (a); (b)
GA-12	Transverse	accel				± 90° from the riser plane					Fig. 11 (a); (b)
GA-13	Near	tical				0° from the riser plane					Fig. 7 (a); (b)
GA-14	Far	st ver				180º from the riser plane	ar	Crossed	ar	Crossed	Fig. 8 (a); (b)
GA-15	Crossed	the wors	22.5° from bow			± 45° (cross near) and ± 135° (cross far) from the riser plane	10-year	± 22.5 of the riser	100-year	± 45 of the wave	Fig. 9 (a); (b), Fig. 10 (a); (b)
GA-16	Transverse	with				± 90° from the riser plane					Fig. 11 (a); (b)
GA-17	Near	Draft			bu	0º from the riser plane					
GA-18	Far		Beam		noorii	180º from the riser plane	1		_		
GA-19	Crossed		seas (90°)		r, intact mooring	± 45° (cross near) and ± 135° (cross far) from the riser plane	(3)	(4)	1-year	(5)	
GA-20	Transverse				1-yr,	± 90º from the riser plane					

Table 3 - Global analysis matrix for Design Load Case A

(1) For selection of the FPU draft and waves for each load case, the motion analysis procedure presented in Appendix A shall be followed.

(2) Offset direction is defined by the riser azimuth and the load case position (NEAR, FAR, etc.) presented on the second column of the table.

	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
BR			^{SHEET} 12	of 34
PETROBRAS		NP-1	1	
	LOAD-EFFECT ANALTSIS O	SUBSEA UNIBILICALS	SUB/ES/EIS	SE/EDF

- (3) The purpose of these load cases is to represent a swell condition based on the PETROBRAS operational experience. If not specified, wave height and period shall be determined as follows:
 - (i) Hs for a RP of 1-year. For FPU's in operation at Campos Basin, Hs shall be limited to 4.5 m;
 - (ii) Tp shall be equal to the natural period of roll motion of the floating unit.
- (4) Wave direction is defined according to the mooring system as follows:
 - (i) For turret mooring system the wave direction shall be ± 90° relative to the offset direction defined in note (2). There are two possible wave directions for each load case.
 - (ii) For spread mooring system (SS or ship shape unit) the wave direction shall be ± 90° relative to the heading direction of the unit. The wave direction shall be in accordance with the offset direction, in such a way that the wave shall not be opposed to the offset. Therefore, there is one possible wave direction for each load case only.
- (5) Current direction shall be the same of the offset direction. For turret moored systems, the FPU shall be considered aligned with the current, running from bow to stern.

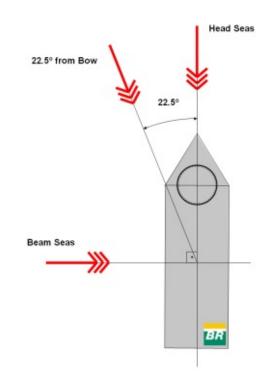
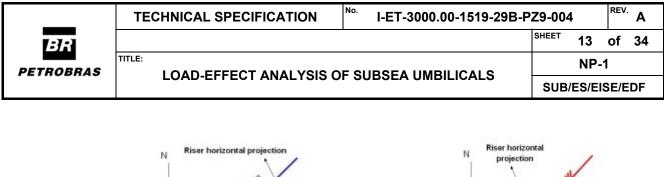



Figure 4 - Wave incidence direction for ship shape unit with turret moored system

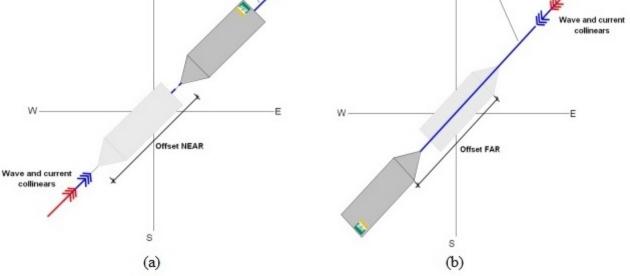


Figure 5 - Collinear environmental loads and offsets: (a) Near, (b) Far

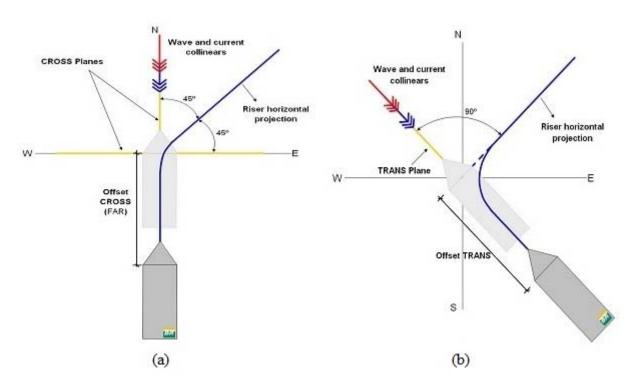
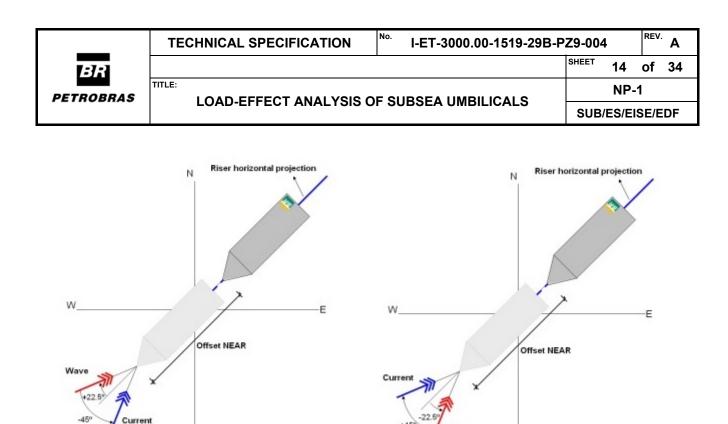



Figure 6 - Collinear environmental loads and offsets: (a) Crossed, (b) Transverse

s (a) s

(b)

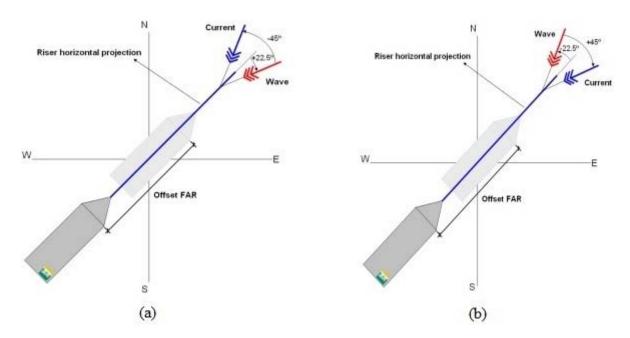
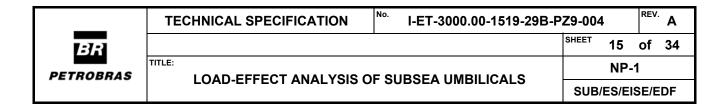



Figure 8 - Crossed environmental loads and offsets: (a), (b) Far

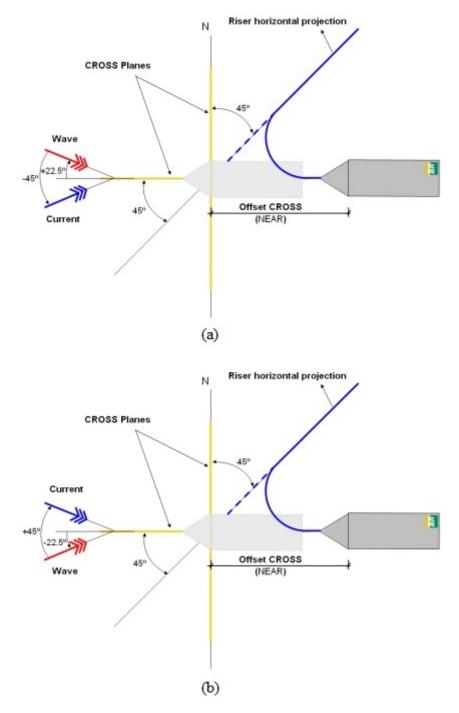


Figure 9 - Crossed environmental loads and offsets: (a), (b) Crossed Near

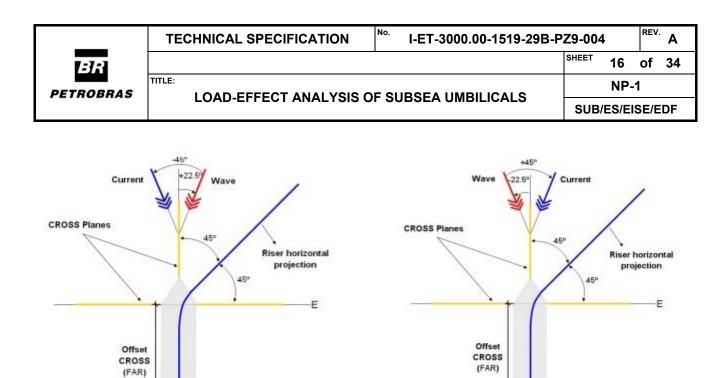


Figure 10 - Crossed environmental loads and offsets: (a), (b) Crossed Far

(b)

(a)

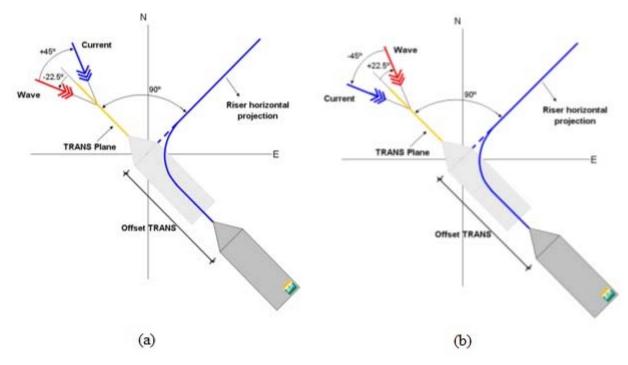


Figure 11 - Crossed environmental loads and offsets: (a), (b) Transverse

TITLE:

TECHNICAL SPECIFICATION

I-ET-3000.00-1519-29B-PZ9-004

LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS

NP-1 SUB/ES/EISE/EDF

17

SHEET

REV.

Α

of 34

			Functio	onal Load			Environme	ental	Load		From Table 3, select
Load Case	Position	FPU	FPU	FPU o	offset ⁽¹⁾		Wave	(Current	Accidental Load	the load case which
		Draft	Heading	RP	Direction	RP	Direction	RP	Direction		present:
GB-01	Near			A-01 to s from							Maximum tension and angle on the top region among near cases ⁽²⁾
GB-02	Far	ble 3	ble 3	m G le 3 i	ble 3	Table 3	ble 3	able 3	ble 3		Maximum tension and angle on the top region among far cases ⁽²⁾
GB-03	Crossed	from Ta	from Ta	n Table 3 is from case from Table naged mooring	from Ta	from	from Ta	from T	from Ta	ken	Maximum tension and angle on the top region among crossed cases ⁽²⁾
GB-04	Transverse	the original load case from Table	as the original load case from Table	fror vad dan	as the original load case from Table	load case	the original load case from Table	load case	as the original load case from Table	One mooring line broken	Maximum tension and angle on the top region among transverse cases ⁽²⁾
GB-05	Near	original	original	100-year (if original load case fror GA-16) or 1-year (if original load GA-17 to GA-20), dan	original	original load	original	original load	original	e moorir	Maximum TDP, sag or hog curvature among near cases
GB-06	Far	as	e as the	original lc 1-year (if (GA-17 to	e as the	e as the	as	e as the	e as the	Ö	Maximum TDP, sag or hog curvature among far cases
GB-07	Crossed	Same	Same	-year (if c -16) or 1- 0	Same	Same	Same	Same	Same		Maximum TDP, sag or hog curvature among cross cases
GB-08	Transverse			100-) GA-							Maximum TDP, sag or hog curvature among transverse cases

Table 4 - Global analysis matrix for Design Load Case B

(1) If not specified, offset for damaged mooring system for load cases originated from GA-17 to GA-20 shall be equal to the offset for 100year environmental condition and intact mooring system.

(2) If maximum tension and maximum angle on the top region occur on different load cases from Table 3, then the load case in Table 4 will become two different load cases.

			Functior	nal Lo	ad		Environme	ental I	Load							
Load Case	Position	FPU	FPU	FF	PU offset		Wave	C	Current	Accidental Load	From Table 3, select the load case which present:					
		Draft	Heading	RP	Direction	RP	Direction	RP	Direction		•					
GC-01	Near										Maximum tension and angle on the top region among near cases ⁽¹⁾					
GC-02	Far	Table 3	Table	Table	Table	Table	Table	Table 3	Table 3	Table 3	Table 3	Table 3	Table 3	Table 3	ē	Maximum tension and angle on the top region among far cases ⁽¹⁾
GC-03	Crossed	from	as the original load case from Table	from	case from Table	from	as the original load case from Table	from	ie from]	Buoyancy losses over service life	Maximum tension and angle on the top region among crossed cases ⁽¹⁾					
GC-04	Transverse	load case	load cas	load case	load cas	load case	load cas	load case	load cas	s over s	Maximum tension and angle on the top region among transverse cases ⁽¹⁾					
GC-05	Near	original load	original	original load	original load	original load	original	as the original load case from Table as the original load case from Table	original	y losse	Maximum TDP, sag or hog curvature among near cases					
GC-06	Far	as the	as the	as the	as the	as the	as the	as the	as the	suoyano	Maximum TDP, sag or hog curvature among far cases					
GC-07	Crossed	Same	Same	Same	Same	Same	Same	Same	Same	ш	Maximum TDP, sag or hog curvature among cross cases					
GC-08	Transverse										Maximum TDP, sag or hog curvature among transverse cases					

Table 5 - Global analysis matrix for Design Load Case C

(1) If maximum tension and maximum angle on the top region occur on different load cases from Table 3, then the load case in Table 5 will become two different load cases.

TITLE:

LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS

TECHNICAL SPECIFICATION

18

SHEET

REV.

Α

of 34

			Functiona	al Lo	ad		Environm	ental	Load		
Load Case	Position	tion FPU FPU FPU offset Wave Current		Current	Accidental Load	From Table 3, select the load case which present:					
		Draft	Draft Heading RP Direction RP Direction RP Direction		Direction						
GD-01	Near	load 3	load 3	bu	load 3		load 3		load 3	ing	Maximum tension and angle on the top region among near cases ⁽¹⁾
GD-02	Far	original Table	original Table	ict mooring	original Table	-year	original Table	-year ne original load om Table 3 ment flooding	ent flood	Maximum tension and angle on the top region among far cases ⁽¹⁾	
GD-03	Crossed	e as the c ase from	ne as the c case from	-year, intact	ne as the c case from	1-y	ne as the c case from	1-y	ne as the c case from	Compartment flooding	Maximum tension and angle on the top region among crossed cases ⁽¹⁾
GD-04	Transverse	Same ca	Same ca	1-y	Same ca		Same ca		Same ca	Co	Maximum tension and angle on the top region among transverse cases ⁽¹⁾

Table 6 - Global analysis matrix for Design Load Case D

No.

I-ET-3000.00-1519-29B-PZ9-004

(1) If maximum tension and maximum angle on the top region occur on different load cases from Table 3, then the load case in Table 6 will become two different load cases.

			Functional Load		Environmental Load														
Load Case	Position	Installation	······································				e e e e e e e e e e e e e e e e e e e	Current											
		Vessel Draft to the wave incidence directi		offset	H (m)	T (s)	Direction	RP	Direction										
GE-01		worst eration notion case ⁽¹⁾	Head seas		8.55			1											
GE-02	Neutral	<i>i</i> ith th acce gular h loac	<i>i</i> ith th acce gular h loac	with th al acce ingular ch loac	<i>i</i> ith the accele gular r h load	with the al accele ngular r ch load	<i>i</i> th the accele gular r h load	/ith the accele gular r h load	/ith the accele gular r h load	with th al acce ingular ch loac	Quartering seas	ring seas None 7.60	(1)	Collinear	1	Collinear			
GE-03		Draft wit vertical a and ang for each	Beam seas		6.08			1											

Table 7 - Global analysis matrix for Design Load Case E

(1) For each load case, a screening analysis shall be performed to choose the installation vessel draft and wave period (between 6 to 15 s) that give the highest vertical acceleration and highest angular motion.

5.2.1.1 Bend stiffener design

Considering the global analysis results for the design load cases, at least one of the following combinations of axial tension and angle between the riser and bending stiffener neutral axis shall be considered in the bending stiffener design:

- Maximum top tension associated with maximum angle between the riser and bend stiffener neutral axis, for load cases analyzed considering only a regular wave procedure
- Maximum top tension with associated angle between the riser and bend stiffener neutral axis, and maximum
 angle between the riser and bend stiffener neutral axis with associated top tension, for load cases analyzed
 considering an irregular wave procedure or for load cases analyzed considering an regular wave procedure
 checked by an irregular wave procedure (refer to Annex B)
- Top tension and angle between the riser and bend stiffener neutral axis that give the maximum bending moment calculated based on the maximum pseudo-curvature [$\kappa_p = T_{top} * (1 \cos \alpha)$ or $\kappa_p = 2 * T_{top} * \sin^2(\alpha/2)$]

	TECHNICAL SPECIFICATION	Z9-004	^{REV.} A
BR		^{SHEET} 19	of 34
PETROBRAS		NP- 1	I
	LOAD-LITECT ANALISIS O	SUB/ES/EIS	SE/EDF

5.2.2 Verification load cases global analysis

5.2.2.1 Pull-in with temporary mooring system

Global analysis of Verification Load Case F shall include at least the load cases listed in Table 8. These load cases are generated taking into consideration the results of the global analysis of Design Load Case A, according to the specified in Table 8 (e.g. maximum top tension, maximum curvature etc.). The load cases in Table 8 shall consider the FPU minimum draft and 1-year RP environmental loads, but with an offset value as follows: global analysis of Verification Load Case F shall consider an offset of 14.5% of the WD, and SUPPLIER shall clearly present in the Design Report if all design criteria were fulfilled or not. Risers and/or ancillary equipment which design criteria were not fulfilled considering this offset value shall be reevaluated considering a FPU offset of 12.5% of the WD, and again SUPPLIER shall clearly present in the Design Report if all design.

			Functiona	l Load			Environme	ental I	oad	
Load Case	Position	FPU Draft	FPU	FPU	J offset		Wave	C	Current	From Table 3, select the load case which present:
		FPU Drait	Heading	Value	Direction	RP	Direction	RP	Direction	
GF-01	Near									Maximum tension and angle on the top region among near cases ⁽¹⁾
GF-02	Far		Table 3	5%)	Table 3		Table 3		Table 3	Maximum tension and angle on the top region among far cases ⁽¹⁾
GF-03	Crossed		se from ⁻	ıally, 12.	Same as the original load case from Table		Same as the original load case from Table		se from .	Maximum tension and angle on the top region among crossed cases ⁽¹⁾
GF-04	Transverse	Minimum	Same as the original load case from Table 3	l, eventually,		1-year		1-year	Same as the original load case from Table	Maximum tension and angle on the top region among transverse cases ⁽¹⁾
GF-05	Near	Min	original	of WD (and,	original	÷	original	÷	original	Maximum TDP, sag or hog curvature among near cases
GF-06	Far		as the c	14.5% of V	as the c		as the c		as the c	Maximum TDP, sag or hog curvature among far cases
GF-07	Crossed		Same	14.	Same		Same		Same	Maximum TDP, sag or hog curvature among cross cases
GF-08	Transverse									Maximum TDP, sag or hog curvature among transverse cases

Table 8 - Global analysis matrix for Verification Load Case F

(1) If maximum tension and maximum angle on the top region occur on different load cases from Table 3, then the load case in Table 8 will become two different load cases.

5.2.2.2 First oil with temporary mooring system

Global analysis of Verification Load Cases G, H and I shall consider the offset values in Table 9. Case I offsets shall be used for the riser verification with temporary mooring conditions, and SUPPLIER shall clearly present in the Design Report if all design criteria were fulfilled or not for this offset case. Risers and/or ancillary equipment which design criteria were not fulfilled considering Case I offsets shall be reevaluated considering Case II offsets. Again, SUPPLIER shall clearly present in the Design Report if all design criteria were fulfilled or not for the Design Case II offsets.

	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
BR			^{SHEET} 20	of 34
PETROBRAS			NP-	1
	LOAD-EFFECT ANALTSIS O	SUBSEA UMBILICALS	SUB/ES/EI	SE/EDF

Case	Environmental RP	Mooring condition	Total FPU Offset ⁽¹⁾ (%WD)
	1-year	Intact	8.5
I	10-year	Intact	12.5
	10-year	One mooring line broken	14.5
	1-year	Intact	6.5
П	10-year	Intact	10.5
	10-year	One mooring line broken	12.5

Table 9 - Offset values for First oil with temporary mooring condition

(1) Including installation and positioning errors.

Global analysis of Verification Load Case G shall include at least the load cases listed in Table 10. These load cases are generated taking into consideration the results of the global analysis of Design Load Case A, according to the specified in Table 10 (e.g. maximum top tension, maximum curvature etc.). The load cases in Table 10 shall consider the same FPU draft of the original load cases from Table 3, but with reduced environmental loads and with a higher offset value due to the temporary mooring system.

Global analysis of Verification Load Case H shall include at least the load cases listed in Table 11. These load cases are generated taking into consideration the results of the global analysis of Design Load Case A, according to the specified in Table 11 (e.g. maximum top tension, maximum curvature etc.). The load cases in Table 11 shall consider the same FPU draft of the original load cases from Table 3, but with reduced environmental loads and with a higher offset value due to the damaged temporary mooring system.

Global analysis of Verification Load Case I shall include at least the load cases listed in Table 12. These load cases are generated taking into consideration the results of the global analysis of Design Load Case A, according to the specified in Table 12 (e.g. maximum top tension, maximum curvature etc.). The load cases in Table 12 shall consider the same FPU draft of the original load cases from Table 3, but with reduced environmental loads and with a higher offset value due to the temporary mooring system, together with the buoyancy losses as defined in Table 2.

TITLE:

TECHNICAL SPECIFICATION

LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS

REV. Α of

34

NP-1 SUB/ES/EISE/EDF

21

SHEET

			Function	nal Loa	d		Environm	ental	Load	
Load Case	Position	FPU	FPU	FP	U offset		Wave	C	Current	From Table 3, select the load case which present:
		Draft	Heading	RP	Direction	RP	Direction	RP	Direction	•
GG-01	Near			e 3 is						Maximum tension and angle on the top region among near cases ^{(2) (3)}
GG-02	Far			m Table		(1)		1-year		Maximum tension and angle on the top region among far cases ^{(2) (3)}
GG-03	Crossed			ase fro		(1)		1-y.		Maximum tension and angle on the top region among crossed cases ^{(2) (3)}
GG-04	Transverse			al load c						Maximum tension and angle on the top region among transverse cases ^{(2) (3)}
GG-05	Near			⁻ origina 19						Maximum tension and angle on the top region among near cases ⁽²⁾
GG-06	Far	Table 3	Same as the original load case from Table 3	-year (ił / moorir	Same as the original load case from Table 3	1-year	Same as the original load case from Table 3	(1)	Same as the original load case from Table 3	Maximum tension and angle on the top region among far cases ⁽²⁾
GG-07	Crossed	e from	e from	16) or 1 mporary	e from	1-y	e from	(1)	e from	Maximum tension and angle on the top region among crossed cases ⁽²⁾
GG-08	Transverse	oad cas	oad cas	to GA- ³ ntact ter	oad cas		oad cas		oad cas	Maximum tension and angle on the top region among transverse cases ⁽²⁾
GG-09	Near	Same as the original load case from Table	riginal lo	GA-01 A-20), iı	riginal lo		riginal lo		riginal lo	Maximum TDP, sag or hog curvature among near cases ⁽³⁾
GG-10	Far	is the o	is the o	is from 17 to G	is the o	(1)	is the o	1-year	is the o	Maximum TDP, sag or hog curvature among far cases ⁽³⁾
GG-11	Crossed	Same a	Same a	Table 3 m GA-	Same a	(1)	Same a	1-y	Same a	Maximum TDP, sag or hog curvature among cross cases ⁽³⁾
GG-12	Transverse			e from ⁻ fro						Maximum TDP, sag or hog curvature among transverse cases ⁽³⁾
GG-13	Near			oad cas						Maximum TDP, sag or hog curvature among near cases
GG-14	Far			riginal lo		1-year		(1)		Maximum TDP, sag or hog curvature among far cases
GG-15	Crossed			10-year (if original load case from Table 3 is from GA-01 to GA-16) or 1-year (if original load case from Table from GA-17 to GA-20), intact temporary mooring		1-y		(')		Maximum TDP, sag or hog curvature among cross cases
GG-16	Transverse			10-ye						Maximum TDP, sag or hog curvature among transverse cases

Table 10 - Global analysis matrix for Verification Load Case G

No.

I-ET-3000.00-1519-29B-PZ9-004

(1) 10-year (if original load case from Table 3 is from GA-01 to GA-16) or 1-year (if original load case from Table 3 is from GA-17 to GA-20)

(2) If maximum tension and maximum angle on the top region occur on different load cases from Table 3, then the load case in Table 10 will become two different load cases.

(3) For GG-01, GG-02, GG-03, GG-04, GG-09. GG-10, GG-11 and GG-12, if the original load case from Table 3 is from GA-17 to GA-20, then it is not necessary to perform the analysis, respectively, for load cases GG-05, GG-06, GG-07, GG-08, GG-13, GG-14, GG-15 and GG-16.

I-ET-3000.00-1519-29B-PZ9-004

LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS

NP-1

22

SHEET

REV.

Α

34 of

SUB/ES/EISE/EDF

		Functional Load					Environme	ental I	Load		From Table 2, coloct the			
Load Case	Position	FPU	FPU	FP	U offset		Wave	C	Current	Accidental Load	From Table 3, select the load case which			
Cues		Draft	Heading	RP	Direction	RP	Direction	RP	Direction	2000	present:			
GH-01	Near			-17 to							Maximum tension and angle on the top region among near cases ^{(2) (3)}			
GH-02	Far			3 is from GA-17 to				ar			Maximum tension and angle on the top region among far cases ^{(2) (3)}			
GH-03	Crossed			ole 3 is f		(1)		1-year			Maximum tension and angle on the top region among crossed cases ^{(2) (3)}			
GH-04	Transverse			10-year (if original load case from Table 3 is from GA-01 to GA-16) or 1-year (if original load case from Table GA-20), damaged temporary mooring							Maximum tension and angle on the top region among transverse cases ^{(2) (3)}			
GH-05	Near			load cas							Maximum tension and angle on the top region among near cases ⁽²⁾			
GH-06	Far	able 3	able 3	original ing	able 3	ar	able 3		able 3		Maximum tension and angle on the top region among far cases ⁽²⁾			
GH-07	Crossed	e from T	e from T	-year (if try moor	e from T	1-year	e from T	(1)	e from T	oken	Maximum tension and angle on the top region among crossed cases ⁽²⁾			
GH-08	Transverse	Same as the original load case from Table	Same as the original load case from Table 3	rom GA-01 to GA-16) or 1-year (if orig GA-20), damaged temporary mooring	al load cas		Same as the original load case from Table		Same as the original load case from Table 3	One mooring line broken	Maximum tension and angle on the top region among transverse cases ⁽²⁾			
GH-09	Near	e origina	e origina	-01 to G damag€	Same as the original load case from Table 3		e origina		e origina	ne moor	Maximum TDP, sag or hog curvature among near cases ⁽³⁾			
GH-10	Far	ne as th	ne as th	rom GA GA-20),		(1)	ne as th	1-year	ne as th	0	Maximum TDP, sag or hog curvature among far cases ⁽³⁾			
GH-11	Crossed	Sar	Sar	ble 3 is f		Sam	Sam	Same	Same	(')	Sar	1-y	Sar	
GH-12	Transverse			from Tal							Maximum TDP, sag or hog curvature among transverse cases ⁽³⁾			
GH-13	Near			ld case 1							Maximum TDP, sag or hog curvature among near cases			
GH-14	Far			ginal loa		1-year		(1)			Maximum TDP, sag or hog curvature among far cases			
GH-15	Crossed			ear (if ori		1-y		(')			Maximum TDP, sag or hog curvature among cross cases			
GH-16	Transverse			10-ye							Maximum TDP, sag or hog curvature among transverse cases			

Table 11 - Global analysis matrix for Verification Load Case H

No.

(1) 10-year (if original load case from Table 3 is from GA-01 to GA-16) or 1-year (if original load case from Table 3 is from GA-17 to GA-20)

(2) If maximum tension and maximum angle on the top region occur on different load cases from Table 3, then the load case in Table 11 will become two different load cases.

(3) For GH-01, GH-02, GH-03, GH-04, GH-09. GH-10, GH-11 and GH-12, if the original load case from Table 3 is from GA-17 to GA-20, then it is not necessary to perform the analysis, respectively, for load cases GH-05, GH-06, GH-07, GH-08, GH-13, GH-14, GH-15 and GH-16.

TITLE:

TECHNICAL SPECIFICATION

I-ET-3000.00-1519-29B-PZ9-004

TITLE:

LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS

No.

NP-1

SUB/ES/EISE/EDF

23

SHEET

			Function	al Load	ł		Environme	ental I	Load		From Table 3, select the
Load Case	Position	FPU	FPU	FP	U offset		Wave	C	Current	Accidental Load	load case which
		Draft	Heading	RP	Direction	RP	Direction	RP	Direction		present:
GI-01	Near			-17 to							Maximum tension and angle on the top region among near cases ^{(2) (3)}
GI-02	Far			3 is from GA-17 to				ar			Maximum tension and angle on the top region among far cases ^{(2) (3)}
GI-03	Crossed					(1)		1-year			Maximum tension and angle on the top region among crossed cases ^{(2) (3)}
GI-04	Transverse			10-year (if original load case from Table 3 is from GA-01 to GA-16) or 1-year (if original load case from Table GA-20), damaged temporary mooring							Maximum tension and angle on the top region among transverse cases ^{(2) (3)}
GI-05	Near			oad cas							Maximum tension and angle on the top region among near cases ⁽²⁾
GI-06	Far	able 3	able 3	original ing	able 3	ar	able 3		able 3	0	Maximum tension and angle on the top region among far cases ⁽²⁾
GI-07	Crossed	e from T	e from T	-year (if iry moor	e from T	1-year	e from T	(1)	e from T	ervice life	Maximum tension and angle on the top region among crossed cases ⁽²⁾
GI-08	Transverse	Same as the original load case from Table	Same as the original load case from Table 3	from GA-01 to GA-16) or 1-year (if orig GA-20), damaged temporary mooring	Same as the original load case from Table 3		Same as the original load case from Table 3		Same as the original load case from Table	Buoyancy losses over service life	Maximum tension and angle on the top region among transverse cases ⁽²⁾
GI-09	Near	e origine	e origine	-01 to G, damage	e origine		e origine		e origine	incy loss	Maximum TDP, sag or hog curvature among near cases ⁽³⁾
GI-10	Far	ne as th	ne as th	rom GA. GA-20),	ne as th	(1)	ne as th	1-year	ne as th	Buoya	Maximum TDP, sag or hog curvature among far cases ⁽³⁾
GI-11	Crossed	Sar	Sar	ole 3 is f	Sar	(1)	Sar	1-y	Sar		Maximum TDP, sag or hog curvature among cross cases ⁽³⁾
GI-12	Transverse			rom Tat							Maximum TDP, sag or hog curvature among transverse cases ⁽³⁾
GI-13	Near			ld case 1							Maximum TDP, sag or hog curvature among near cases
GI-14	Far			ginal loa		ear		(4)			Maximum TDP, sag or hog curvature among far cases
GI-15	Crossed			ar (if ori		1-year		(1)			Maximum TDP, sag or hog curvature among cross cases
GI-16	Transverse			10-ye							Maximum TDP, sag or hog curvature among transverse cases

Table 12 - Global analysis matrix for Verification Load Case I

(1) 10-year (if original load case from Table 3 is from GA-01 to GA-16) or 1-year (if original load case from Table 3 is from GA-17 to GA-20)

(2) If maximum tension and maximum angle on the top region occur on different load cases from Table 3, then the load case in Table 12 will become two different load cases.

(3) For GI-01, GI-02, GI-03, GI-04, GI-09. GI-10, GI-11 and GI-12, if the original load case from Table 3 is from GA-17 to GA-20, then it is not necessary to perform the analysis, respectively, for load cases GI-05, GI-06, GI-07, GI-08, GI-13, GI-14, GI-15 and GI-16.

5.2.3 Extreme-load global analysis input and output tables

SUPPLIER shall present tables containing the input and output data of the performed global analysis, for both the design load cases (specified in Table 1) and verification load cases (specified in Table 2).

REV. A

of 34

	TECHNICAL SPECIFICATION	Z9-004	^{REV.} A	
BR		^{SHEET} 24	of 34	
PETROBRAS		NP-1		
12111021140	LOAD-EFFECT ANALTSIS O	SUB/ES/EIS	SE/EDF	

The input data tables shall have at least the information presented on the template on Table 13. The output data tables shall have at least the information presented on the templates on Table 14, Table 15 and Table 16.

Table 13 - Minimum	content for extreme-	-load global analy	sis input data table

ſ		0	Offset		Wave							Current			
	Load Case	Value (m)	Direction (deg.)	Direction (deg.)	Compass Direction (N, NE…)	RP (years)	Hs (m)	Tp (s)	Gamma	H ⁽¹⁾ (m)	T ⁽¹⁾ (s)	Direction (deg.)	Compass Direction (N, NE…)	RP (years)	Draft

(1) Only if the analysis is performed considering a regular wave

Table 14 - Minimum content for extreme-load global analysis output data table - results for the top region

	Top Angle (deg.)		Top Tension (kN)			May Danding Mamont (KN m)	MPD (m)
Load Case	Min	Max	Min	Max	Max Shear Force (kN)	Max Bending Moment (kN.m)	MBR (m)

Table 15 - Minimum content for extreme-load global analysis output data table - results for the sag/hog region

Load Case	F Max (kN)	F Min & Asso	ciated Bending Radius	MBR & Associated F		
	r Wax (KIN)	F Min (kN)	Bending Radius (m)	MBR (m)	F (kN)	

Table 16 - Minimum content for extreme-load global analysis output data table - results for the TDP region

Load Case	F Max (kN)	F Min & Asso	ciated Bending Radius	MBR & Associated F		
LUAU Case	r Wax (KIN)	F Min (kN)	Bending Radius (m)	MBR (m)	F (kN)	

5.3 Structural analysis

The structural analysis load cases specified herein shall be performed to determine stresses and strains in the structural and functional components of the subsea umbilical and the respective utilization factors. The following general notes shall be observed for all load cases:

- The load cases shall consider the fluid conduits under the internal pressure defined in Table 1 and in Table 2, associated with the external pressure relative to the water depth of the analyzed region (top, sag, hog and TDP).
- Maximum global analysis results selection shall be made comparing effective tension, but when assessing applied stresses and deformations on metallic tubes, the true wall tension (or true wall compression) shall be adopted. The true wall tension is a function of the effective tension, the internal and external pressures at the analyzed region and of the internal and external cross-sectional areas of the tubes, using the assumption of tube closed ends.
- If any riser section is under effective compression, then "minimum effective tension" means "maximum effective compression".
- On a same load case, when one load is defined as "associated" to another, it means that the value to be considered for the associated load shall be obtained at the same umbilical section and at the same simulation time when the other load is "maximum" or "minimum".

ER Petrobras	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P	I-ET-3000.00-1519-29B-PZ9-004				
			^{SHEET} 25	of 34			
		NP-1					
	LUAD-EFFECT ANALTSIS U	F SUBSEA UNIDILICALS	SUB/ES/EIS	E/EDF			

Besides the ones listed herein, any other potential failure mechanism identified by SUPPLIER on components (functional or structural) shall be considered and relevant results shall be reported, including the utilization factors (UF).

The structural analysis results shall be condensed in summary tables, including at least:

(i) Values of the loads used to address stresses and strains. When applicable, SUPPLIER shall inform effective tension, bending radius, crushing load (force/meter/pad) due to tensioners radial compression and/or internal pressure of fluid conduits.

(ii) Stress and/or strain results for each component. When applicable, SUPPLIER shall inform stress of steel wires (umbilical armouring, electrical cable armouring and/or optical fiber cable armouring), stress of metallic tubes (fluid conduits and/or strength members of optical fiber cables), ovalization of metallic tubes, stress and strain of fiber reinforced plastic rods, strain on electrical cables copper conductors and/or strain of optical fibers.

(iii) Structural capacity of components. When applicable, SUPPLIER shall inform SMYS and UTS of structural components (steel wires, metallic tubes and/or fiber reinforced plastic rods), maximum allowable ovality of metallic tubes (fluid conduits only), maximum allowable strain of electrical cables copper conductors and maximum allowable strain of optical fibers.

(iv) Utilization factor (UF) related to the combined stress/strain state assessed, defined as the ratio between the applied stress/strain on the component and its structural capacity.

Additionally, SUPPLIER may present graphics comparing the global analysis results for the extreme-load cases with the respective capacity curves. However, it does not exempt SUPPLIER of presenting the results as required above.

5.3.1 Design load cases structural analysis

Structural analysis of design load cases A to E – presented in Table 1 – shall include at least the load cases listed from Table 17 to Table 21.

Load Case	Umbilical Region	Effective Tension	Bending Radius	Other Loads	Potential Failure Mechanism
LA-01	Тор	Maximum from GA-01 to GA-20	Associated to the effective tension		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LA-02	Тор	Associated to the bending radius	Minimum from GA-01 to GA-20		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LA-03	TDP, Sag or Hog	Associated to the bending radius	Minimum from GA-01 to GA-20		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LA-04 ⁽¹⁾	TDP, Sag or Hog	Minimum from GA-01 to GA-20	Associated to the effective tension		Buckling of structural components Deformation of copper conductors Deformation of optical fibers

Table 17 - Structural analysis matrix for Design Load Case A

PETROBRAS

TITLE:

LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS

TECHNICAL SPECIFICATION

REV.

Α

SUB/ES/EISE/EDF

SHEET

Load Case	Umbilical Region	Effective Tension	Bending Radius	Other Loads	Potential Failure Mechanism					
LB-01	Тор	Maximum from GB-01 to GB-08	Associated to the effective tension		Yielding of structural components Deformation of copper conductors Deformation of optical fibers					
LB-02	Тор	Associated to the bending radius	Minimum from GB-01 to GB-08		Yielding of structural components Deformation of copper conductors Deformation of optical fibers					
LB-03	TDP, Sag or Hog	Associated to the bending radius	Minimum from GB-01 to GB-08		Yielding of structural components Deformation of copper conductors Deformation of optical fibers					
LB-04 ⁽¹⁾	TDP, Sag or Hog	Minimum from GB-01 to GB-08	Associated to the effective tension		Buckling of structural components Deformation of copper conductors Deformation of optical fibers					

Table 18 - Structural analysis matrix for Design Load Case B

No.

I-ET-3000.00-1519-29B-PZ9-004

(1) This load case applies only when the minimum effective tension is negative, i.e., the umbilical is under axial compression

Load Case	Umbilical Region	Effective Tension	Bending Radius	Other Loads	Potential Failure Mechanism
LC-01	Тор	Maximum from GC-01 to GC-08	Associated to the effective tension		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LC-02	Тор	Associated to the bending radius	Minimum from GC-01 to GC-08		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LC-03	TDP, Sag or Hog	Associated to the bending radius	Minimum from GC-01 to GC-08		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LC-04 ⁽¹⁾	TDP, Sag or Hog	Minimum from GC-01 to GC-08	Associated to the effective tension		Buckling of structural components Deformation of copper conductors Deformation of optical fibers

Table 19 - Structural analysis matrix for Design Load Case C

ER petrobras

TITLE:

LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS

TECHNICAL SPECIFICATION

[■] 27 of 34 NP-1

REV.

Α

SUB/ES/EISE/EDF

SHEET

			_	A /1	
Load Case	Umbilical Region	Effective Tension	Bending Radius	Other Loads	Potential Failure Mechanism
LD-01	Тор	Maximum from GD-01 to GD-04	Associated to the effective tension		Yielding of structural components
LD-02	Тор	Associated to the bending radius	Minimum from GD-01 to GD-04		Yielding of structural components
LD-03	TDP, Sag or Hog	Associated to the bending radius	Minimum from GD-01 to GD-04		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LD-04 ⁽¹⁾	TDP, Sag or Hog	Minimum from GD-01 to GD-04	Associated to the effective tension		Buckling of structural components Deformation of copper conductors Deformation of optical fibers

Table 20 - Structural analysis matrix for Design Load Case D

No.

I-ET-3000.00-1519-29B-PZ9-004

(1) This load case applies only when the minimum effective tension is negative, i.e., the umbilical is under axial compression

Load Case	Umbilical Region	Effective Tension	Bending Radius	Other Loads	Potential Failure Mechanism
LE-01	Тор	Maximum from GE-01 to GE-03	Associated to the effective tension		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LE-02	Тор	Associated to the bending radius	Minimum from GE-01 to GE-03		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LE-03	Тор	Maximum from GE-01 to GE-03		Maximum crushing load imposed by the tensioners	Excessive ovalization or collapse of fluid conduits
LE-04	TDP, Sag or Hog	Maximum from GE-01 to GE-03		External pressure relative to the water depth	Excessive ovalization or collapse of fluid conduits
LE-05	TDP, Sag or Hog	Associated to the bending radius	Minimum from GE-01 to GE-03		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LE-06 ⁽¹⁾	TDP, Sag or Hog	Minimum from GE-01 to GE-03	Associated to the effective tension		Buckling of structural components Deformation of copper conductors Deformation of optical fibers

Table 21 - Structural analysis matrix for Design Load Case E

ER petrobras	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
			^{SHEET} 28	of 34
		NP-1		
	LOAD-EFFECT ANALTSIS O	F JUDJEA UWBILICALJ	SUB/ES/EIS	SE/EDF

5.3.2 Verification load cases structural analysis

Structural analysis of verification load cases F to I – presented in Table 2 – shall include at least the load cases listed from Table 22 to Table 25.

5.3.2.1 Pull-in with temporary mooring system

Load Case	Umbilical Region	Effective Tension	Bending Radius	Other Loads	Potential Failure Mechanism
LF-01	Тор	Maximum from GF-01 to GF-08	Associated to the effective tension		Yielding of structural components
LF-02	Тор	Associated to the bending radius	Minimum from GF-01 to GF-08		Yielding of structural components
LF-03	TDP, Sag or Hog	Associated to the bending radius	Minimum from GF-01 to GF-08		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LF-04 ⁽¹⁾	TDP, Sag or Hog	Minimum from GF-01 to GF-08	Associated to the effective tension		Buckling of structural components Deformation of copper conductors Deformation of optical fibers

Table 22 - Structural analysis matrix for Verification Load Case F

(1) This load case applies only when the minimum effective tension is negative, i.e., the umbilical is under axial compression

5.3.2.2 First oil with temporary mooring system

Load Case	Umbilical Region	Effective Tension	Bending Radius	Other Loads	Potential Failure Mechanism	
LG-01	Тор	Maximum from GG-01 to GG-16	Associated to the effective tension		Yielding of structural components	
LG-02	Тор	Associated to the bending radius	Minimum from GG-01 to GG-16		Yielding of structural components	
LG-03	TDP, Sag or Hog	Associated to the bending radius	Minimum from GG-01 to GG-16		Yielding of structural components Deformation of copper conductors Deformation of optical fibers	
LG-04 ⁽¹⁾	TDP, Sag or Hog	Minimum from GG-01 to GG-16	Associated to the effective tension		Buckling of structural components Deformation of copper conductors Deformation of optical fibers	

Table 23 - Structural analysis matrix for Verification Load Case G

ER etrobras

TITLE:

LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS

TECHNICAL SPECIFICATION

29 of 34 NP-1

REV.

Α

SUB/ES/EISE/EDF

SHEET

Load Case	Umbilical Region	Effective Tension	Bending Radius	Other Loads	Potential Failure Mechanism
LH-01	Тор	Maximum from GH-01 to GH-16	Associated to the effective tension		Yielding of structural components
LH-02	Тор	Associated to the bending radius	Minimum from GH-01 to GH-16		Yielding of structural components
LH-03	TDP, Sag or Hog	Associated to the bending radius	Minimum from GH-01 to GH-16		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LH-04 ⁽¹⁾	TDP, Sag or Hog	Minimum from GH-01 to GH-16	Associated to the effective tension		Buckling of structural components Deformation of copper conductors Deformation of optical fibers

Table 24 - Structural analysis matrix for Verification Load Case H

No.

I-ET-3000.00-1519-29B-PZ9-004

(1) This load case applies only when the minimum effective tension is negative, i.e., the umbilical is under axial compression

Load Case	Umbilical Region	Effective Tension	Bending Radius	Other Loads	Potential Failure Mechanism
LI-01	Тор	Maximum from GI-01 to GI-16	Associated to the effective tension		Yielding of structural components
LI-02	Тор	Associated to the bending radius	Minimum from GI-01 to GI-16		Yielding of structural components
LI-03	TDP, Sag or Hog	Associated to the bending radius	Minimum from GI-01 to GI-16		Yielding of structural components Deformation of copper conductors Deformation of optical fibers
LI-04 ⁽¹⁾	TDP, Sag or Hog	Minimum from GI-01 to GI-16	Associated to the effective tension		Buckling of structural components Deformation of copper conductors Deformation of optical fibers

Table 25 - Structural analysis matrix for Verification Load Case I

(1) This load case applies only when the minimum effective tension is negative, i.e., the umbilical is under axial compression

6 Fatigue analysis

PETROBRAS has different technical specifications for the fatigue analysis of subsea umbilicals, where the load conditions are presented – including the load cases for global and structural analysis. SUPPLIER shall refer to the project-specific or qualification-purpose documentation that informs which specification – regarding fatigue analysis – shall be considered.

7 On-bottom stability analysis

SUPPLIER shall provide the results of on-bottom stability analysis for all umbilical cross-sections under evaluation, justifying the criteria used. For such analysis, SUPPLIER shall consider the requirements of [3].

ER petrobras	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
			^{SHEET} 30	of 34
		LOAD-EFFECT ANALYSIS OF SUBSEA UMBILICALS		
	LOAD-EFFECT ANALTSIS	F JUBSEA UMBILICALS	SUB/ES/EIS	SE/EDF

8 Interference analysis

SUPPLIER shall perform interference analysis according to [5]. This specification describes the procedure defined by PETROBRAS to perform interference analysis with its minimum requirements, load cases and acceptance criteria.

Information about the neighboring risers shall be available to SUPPLIER at the applicable project-specific or qualification-purpose documentation.

	TECHNICAL SPECIFICATION	No. I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
BR			^{SHEET} 31	of 34
		NP-1		
12111021140	LUAD-EFFECT ANALTSIS OF	F SUBSEA UNIDILICALS	SUB/ES/EIS	E/EDF

APPENDIX A – MOTION ANALYSIS

The selection of wave spectrum properties per direction and FPU/installation vessel draft depends on the environmental data available on PETROBRAS metocean technical specification. If tables or curves of Hs as function of Tp for each wave direction and for a given return period (e.g. 100-years) is available (Hs x Tp contour curves), the following procedure shall be adopted for the load cases analyzed:

a) first, for each draft that RAO table is available (at least full and ballasted), the movements of the FPU/installation vessel shall be transferred from CoM to the riser's connection point, thus obtaining the RAO at the connection point;

b) for each wave direction, the wave spectrum defined by each pair of values Hs x Tp found in the contour table shall be crossed with the RAO at the connection point for each draft and, assuming a Rayleigh distribution, R_{MAX}, P_{MAX} and vertical acceleration shall be determined for a 3-hr storm;

c) the pair Hs x Tp and draft that present the highest vertical acceleration and highest angular motion shall be selected to be considered in dynamic analysis. Angular motion is defined as:

$$\theta = \sqrt{R_{MAX}^2 + P_{MAX}^2}$$

It should be noted that the same load case may be analyzed for different drafts and different waves;

d) for each wave spectrum and draft selected, an irregular wave procedure or a regular wave procedure shall be adopted in dynamic analysis, following the recommendations presented in Annex B.

Otherwise, if the contour table is not available or Hs and Tp are specified as for the load cases GA-17 to GA-20, the following procedure shall be adopted:

a) first, for each draft that RAO table is available (at least full and ballasted), the movements of the FPU/installation vessel shall be transferred from CoM to the riser's connection point, thus obtaining the RAO at the connection point;

b) considering the values of Hs and Tp for a given return period specified for each wave direction, the wave spectrum shall be crossed with the RAO at the connection point for each draft and, assuming a Rayleigh distribution, R_{MAX} , P_{MAX} and vertical acceleration shall be determined for a 3-hr storm;

c) the draft(s) that presents the highest vertical acceleration and highest angular motion are selected to be considered in dynamic analysis. Angular motion is defined according to the above equation.

d) For each wave spectrum and draft selected, an irregular wave procedure or a regular wave procedure shall be adopted in the dynamic analysis following the recommendations presented in Annex B.

For installation vessels the connection points are defined by the position of the wheel or the VLS.

	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P2	Z9-004	^{REV.} A
BR			SHEET 32	of 34
PETROBRAS		NP-1		
	LOAD-EFFECT ANALTSIS O	F SUBSEA UMBILICALS	SUB/ES/EIS	E/EDF

APPENDIX B – WAVE MODELLING PROCEDURES

It is recommended (i.e., not mandatory) that the global extreme-load analyses should be performed adopting an irregular wave procedure as described in this appendix. The irregular wave procedure shall be presented in the Design Premises Report and submitted for PETROBRAS approval.

Alternatively, global extreme-load analyses may be performed considering a regular wave procedure. However, in this case, the irregular wave procedure must be performed for the most critical load cases as a validation check (refer to section B.1).

It is recommended (i.e., not mandatory) that the procedure adopted for regular wave analysis should be the maximum response procedure as described in this appendix, for operating and temporary conditions. A different regular wave procedure may be adopted, however it shall be presented in the Design Premises Report and submitted for PETROBRAS approval.

B.1 Irregular Wave Procedure

The irregular wave procedure is considered at least as a validation check of the results of any regular wave procedure. If used as validation check, only the most critical loading cases shall be analyzed according to this method. For each cross-section under analysis, a minimum number of 4 (four) full irregular analyses shall be chosen by the following criteria:

- a) worst load case for top tension;
- b) worst load case for bending radius;
- c) worst load case for bending stiffener design and
- d) worst load case for compression value;

Notes:

1) When considering the specification of the number of harmonic components to describe wave spectra, a minimum number of 100 shall be considered.

2) The results coming from random analyses shall be statically processed in a way to give consistent and reliable maximum values. When simulating the chosen loading cases, 3 (three) options are considered valid:

i) to perform, at least 5 (five) 30-minute simulations varying random seed for the initial harmonic components phases. The significant wave height shall occur at least once in each simulation;

ii) from simulated long time history (minimum 60 hours) of critical pipe top movement, select a minimum of 10 (ten) 5-minute windows to be analysed;

iii) to perform a 3-hour simulation.

If SUPPLIER is supplying a set of risers of the same cross-section, which are going to be connected to the same FPU, PETROBRAS might accept, if dully justified by SUPPLIER, irregular wave analysis carried out for the riser(s) subjected to the most critical load conditions. For this purpose, the manufacturer shall submit analysis that includes the riser(s) worst conditions indicated in paragraphs a) to d) above.

	TECHNICAL SPECIFICATION	No. I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
BR			SHEET 33	of 34
PETROBRAS		NP-1		
	LOAD-EFFECT ANALTSIS O	F SUBSEA UNIBILICALS	SUB/ES/EIS	E/EDF

B.2 Regular Wave Procedure

The following steps shall be considered:

a) transfer the RAO from the vessel center of movements to the riser top connection coordinates;

b) obtain the response spectrum for the movements of the top connection by crossing the wave spectrum and RAOs for the riser top connection;

c) determine the Rayleigh most probable maxima of motion displacements and accelerations, for the connection movements;

d) determine the wave height (H_{design}) as the Rayleigh most probable maxima from Hs (significant wave height) as used to describe wave spectrum in paragraph b);

e) evaluate periods ($T_{design1}$ and $T_{design2}$) which, associated to H_{design} , provide, respectively, the maximum harmonic displacement and maximum harmonic acceleration, both calculated as per paragraph c); among the possible T_{design} values, chose the closest to the wave peak period (Tp). This procedure shall be carried out, at least, 2 (two) times, depending on top connection motion: (1) the most critical between surge/sway and heave, (2) the most critical between roll and pitch.

B.2.1 Maximum Response Procedure

The purpose of the maximum response procedure is to perform the global extreme-load analysis considering a regular wave that reproduces the same maximum angular motion and the same maximum vertical acceleration at the riser connection for a 3-hour storm. The following procedure determines the height (H) and period (T) of a regular wave and the response amplitude operator for the riser connection:

1. For a given wave direction relative to the FPU/installation vessel, the RAO for displacements and vertical acceleration at the riser connection shall be determined for each draft of the FPU/installation vessel;

2. For a wave spectrum (S) defined by Hs, Tp and gamma, the response spectrum (Su) for the movements and vertical acceleration shall be determined, crossing the wave spectrum and the RAO previously calculated:

$$Su(w) = [RAO(w)]^2 * S(w)$$

3. The significant amplitude (u_{sig}) of displacements and vertical acceleration shall be calculated from the response spectrum as follows:

$$u_{sig} = 2 * \sqrt{m_0}$$

Where m_0 is the response spectrum (Su) area;

4. The maximum amplitude (u_{max}) for the movements (6 DoF) and for the vertical acceleration shall be determined for a storm duration of 3 hours (10,800 s), as follows:

$$u_{\max} = \sqrt{2 * \ln(N)} * \frac{u_{sig}}{2}$$

Where $N=\frac{10,800}{Tz}$ and $Tz=\sqrt{\frac{m_0}{m_2}}$

5. The draft of the FPU/installation vessel that has the highest maximum amplitude for the vertical acceleration and highest angular movement shall be selected (the angular motion definition is in Appendix A). If the

	TECHNICAL SPECIFICATION	^{No.} I-ET-3000.00-1519-29B-P	Z9-004	^{REV.} A
ER Petrobras			^{SHEET} 34	of 34
			NP-1	
	LOAD-EFFECT ANALTSIS O	F JUBSEA UMBILICALS	SUB/ES/EIS	SE/EDF

FPU/installation vessel draft with the highest maximum vertical acceleration is different for the draft with the highest angular movement, the load case shall be analyzed for the two drafts.

6. For the selected draft(s), the regular wave period is determined from the maximum amplitude for the vertical motion $(u_{maxvert})$ and vertical acceleration $(a_{maxvert})$ by the following expression:

$$T = 2\pi \sqrt{\frac{u_{maxvert}}{a_{maxvert}}}$$

7. The RAO for the 6 DoF at the riser connection point are determined from the amplitude of the maximum displacements calculated in item 4 and H_{max} assuming a Rayleigh distribution for the wave spectrum (S), considered in item 2:

$$RAO_{ampl} = \frac{2 * u_{max}}{H_{max}}$$

8. The phases for the RAO at the riser connection point are obtained from the RAO determined in item 1, considering the wave period (T) calculated in item 6.

9. Global extreme-load analysis shall be performed considering the RAO at the riser connection point and a regular wave with maximum height (H_{max}) determined according to item 4 and period (T) defined as in item 6.