	TE		SPECIFIC	ATION	Nº:	I-ET-3010.2	2D-5412-5	83-P4X-00	1	
88	CLIENT:			A	GUP		,	SHEET 1	of	46
ВЛ	JOB:	HIGH	CAPACITY	FPSO - GAS	S EXPORTA	TION ALL E	LECTRIC			
PETROBE	AREA:			ATAPU 2	AND SÉPIA	2				
0000	TITLE:				WOTEN			INTE	RNAL	
SRGE				FLARE	SYSIEM			ES	UP	
MICROS	SOFT WOR	D/V.2016	/ I-ET-3010.	2D-5412-58	3-P4X-001_0	C.DOCX				
			IN	DEX OF	REVISIO	NS				
REV.			DESCRI	PTION A	ND/OR R	REVISED	SHEETS	5		
0	ORIG	INAL ISS	SUE							
А	REVI	SED WH	ERE IND	ICATED						
В	REVI	SED ITE	M 2.7, 7.3	3 AND 21	.1.					
С	REVI	SED ITE	M 22 2							
Ũ		0201121								
										/ []
DATE	KEV.0 19/08/2022	KEV. A 28/10/2022	кеу. В 02/12/2022	KEV.C 03/02/2022	KEV. D	KEV.E	KEV.F	KEV.G	KE/	v. H
DESIGN	ESUP	ESUP	ESUP	ESUP						
EXECUTION	CX80	CX80	CLYZ	CX80					\perp	
		CLYZ CXM6	CX80 CXM6	CLYZ CXM6					+	
INFORMATION	IN THIS DOCUM	ENT IS PROPERT	TY OF PETROBRA	AS, BEING PROH	BITED OUTSIDE	OF THEIR PURPO	DSE.	1	<u> </u>	
FORM OWNED	TO PETROBRAS	6 N-0381 REV.L.								

	TECHNICAL SPECIF	FICATION N°	I-ET-3010.2D-5412-583	-P4X-001	REV.
BR	A	TAPU 2 AND SÉPIA	2	SHEET 2	of 47
PETROBR	4 <i>S</i>	FLARE SYST	EM	INTE	
				E3	UP
		SUMMA	RY		
1 OR	IECTIVE				3
1 OD	PMATIVE REFERENCES AN	ND DESIGN SPEC	TIFICATIONS		3
2 NO	EINITIONS			••••••	
	TEM COMPONENTS (SCOL				
4 515 5 DD	TEM COMPONENTS (SCOP	E OF SUPPLI)		•••••	
5 PRO	CESS DESIGN DATA				
6 GEA	NERAL TECHNICAL REQUI	REMENTS			
7 RAI	DIATION AND NOISE REQU	IREMENTS		•••••	
8 ME	CHANICAL DESIGN CONSI	DERATIONS			
9 FLA	RE SYSTEM DESIGN SCOP	PE			
10 LO	<i>W-PRESSURE FLARE</i>				16
11 HIC	H-PRESSURE FLARE				
12 MA	TERIAL SELECTION				
13 FLA	RE SERVICE PLATFORM				
14 PIP	ING				
15 FLA	RE IGNITION AND MONIT	ORING SYSTEM.			
16 FLA	RE TURNDOWN CONTROL	L SYSTEM			
17 ELI	ECTRICAL REQUIREMENTS	S			33
18 PU	RGE SYSTEMS				
19 PAI	NT AND COLOR				
20 MO	TION REQUIREMENTS				
21 OP1	ERATION REQUIREMENTS				
22 ADI	DITIONAL INFORMATION	IN TECHNICAL F	ROPOSAL		
23 FLA	RE DESIGN TECHNICAL D	OCUMENTS			
24 TES	TS AND INSPECTIONS RO	UTINES			40
25 GU	ARANTEE	. ~			46
20 002	<u></u>				

ER.	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001		REV.	С	_
	ATAPU 2 AND	SÉPIA 2	SHEET	3	of	47	
PETROBRAS		INTERNAL					
PEINOBRAS	FLARE		ESUP				

1 OBJECTIVE

1.1 This specification establishes the technical requirements to supply the High and Low-Pressure Flare System to be used in HIGH CAPACITY FPSO unit. The Flare System includes flare tips, wind and heat shields, ignition panels, pilots, pilots monitoring systems, burners, fuel supply control, staging skids, and everything else entailed, which, even if not described herein, is required for proper operation of the equipment.

2 NORMATIVE REFERENCES AND DESIGN SPECIFICATIONS

- 2.1 All equipment shall comply with the requirements of this technical specification and references stated below. All equipment parts and details not complying with any of these requirements shall be informed on a "Deviation List". Otherwise, they will be considered as "Agreed", and so required.
- 2.2 As a general guideline, in case of conflicting requirements between this technical specification and other cited references, the most stringent shall prevail. If necessary, the MANUFACTURER may revert to PETROBRAS for clarification.
- 2.3 All data shall be presented in International Standard's Units.

2.4 CLASSIFICATION

MANUFACTURER shall perform the work in accordance with the requirements of the Classification Society. MANUFACTURER is responsible for submitting to the Classification Society all documentation in compliance with stated Rules.

2.5 CODES AND STANDARDS

The latest editions of the following codes and standards shall be used as design guidelines.

ISO-23251 (identical	Petroleum,	petrochemical,	and	natural	gas	industries	-
API-STD-521)	Pressure-rel	lieving and depre	ssurin	ig system	S		
ISO-25457 (identical	Petroleum,	petrochemical, a	nd na	atural gas	s indu	stries - Fla	are
API-STD-537)	details for ge	eneral refinery an	id petr	ochemica	al serv	vice	

	TECHNIC	AL SPECIFICATION I-ET-3010.2D-5412-583	-P4X-001 REV. C
BR	TITI E.	ATAPU 2 AND SÉPIA 2	SHEET 4 of 47
PETROBRAS		FLARE SYSTEM	INTERNAL ESUP
API-RP-2A	-WSD	Planning, Designing and Constructing Fixed C	Offshore Platforms
		- Working Stress Design	
IEC 60079		Explosive atmospheres	
IEC 61508	(all parts)	Functional safety of electrical /electronic electronic safety-related systems	/programmable
IEC 61511	(all parts)	Functional safety – Safety instrumented syster industry sector	ns for the process
IEC 60092	(all parts)	Electrical installations in ships	
IEC 61892-	1	Mobile and fixed offshore units - Electrical Insta General requirements and conditions	allations – Part 1:
IEC 61892-	6	Mobile and fixed offshore units - Electrical Inst Installation	allations – Part 6:
IEC 61892-	7	Mobile and fixed offshore units - Electrical Inst Hazardous Area	allations – Part 7:
API RP 505	5	Recommended Practice for Classification Electrical Installations at Petroleum Facilities C I, Zone 0, Zone 1, and Zone 2	of Locations for lassified as Class
ASTM		For material specification	
ASME-B-3	1.3	Process Piping	
ASME-B-16	6.5	Pipe Flanges and Flanged Fittings NPS ¹ / ₂ Metric/Inch Standard	Through NPS 24
ASME-B-16	6.11	Forged Fittings, Socket-Welding and Threader	d
ASME-B-1.	1	Unified Inch Screw Threads (UN and UNR Th	read Form)
ASME B1.2	20.3	Dry seal Pipe Threads (Inch)	
AISC		For steel structures	
AWS		For welding operations	
AWS D1.1/	D1.1M	Structural Welding Code - Steel	

	TECHNICAL SPECIFIC	ATION I-ET-3010.2D-5412-583-P4X-001 Rev. C				
BR	ATA	PU 2 AND SÉPIA 2 SHEET 5 of 47				
PETROBRAS	TITLE:	FLARE SYSTEM				
	<u> </u>	ESUP				
API-RP-14I	 Recommer Maintenan Offshore F 	nded Practice for Design, Installation, and ce of Electrical Systems for Fixed and Floating Petroleum Facilities for Unclassified and Class I,				
	Division 1,	and Division 2 Locations.				
ISO 15156 parts)	– (all Petroleum Containing	and Natural Gas Industries - Materials for Use in H ₂ S- Environments in Oil and Gas Production				
ISO 21457	Petroleum, Materials Production	Petrochemical and Natural Gas Industries - Selection and Corrosion Control for Oil and Gas Systems				
2.6 GOVE	RNMENTAL REGULAT	ION				
NR 10	Brazilian Ministry o Regulamentadora Eletricidade)	of Labor (Ministério do Trabalho e Emprego – Norma Nº 10, Segurança em Instalações e Serviços em				
NR 12	Brazilian Ministry o Regulamentadora Equipamentos)	of Labor (Ministério do Trabalho e Emprego – Norma Nº 12, Segurança no Trabalho em Máquinas e				
NR 13	Brazilian Ministry o Regulamentadora	of Labor (Ministério do Trabalho e Emprego – Norma № 13, Caldeiras, Vasos de Pressão e Tubulação)				
NR 26	Brazilian Ministry o Regulamentadora	of Labor (Ministério do Trabalho e Emprego – Norma Nº 26, Sinalização de Segurança <i>(Safety Signaling)</i>)				
NR-37	Brazilian Ministry o Regulamentadora Petróleo <i>(Health a</i>	of Labor (Ministério do Trabalho e Emprego – Norma Nº 37, Segurança e Saúde em Plataformas de nd Safety in Oil Platforms))				
Brazilian G the require	overnment regulations	are mandatory and shall prevail, if more stringent, over on and other references herein.				
2.7 DESIG	IN SPECIFICATIONS					
Coordinatio	'n					
I-ET-3010.00)-1350-940-P4X-001	SYSTEMS OPERATION PHILOSOPHY				
I-ET-3000.00)-1200-940-P4X-001	TAGGING PROCEDURE FOR PRODUCTION UNITS DESIGN				

	TECHNICAL SPECIFIC	ATION I-ET-3010.2D-5412-583	-P4X-001 REV. C
BR	ATA	PU 2 AND SÉPIA 2	SHEET 6 of 47
PETROBRAS	IIILE:	FLARE SYSTEM	INTERNAL
			ESUP
I-E I-3A36.0	0-1000-941-PPC-001_F		
I-E I-3A26.0	0-1000-941-PPC-001_F	METOCEAN DATA	
Guideline			
DR-ENGP-I-	-1.15	COLOR CODING	
DR-ENGP-N	<i>I</i> -I-1.3	SAFETY ENGINEERING	
Arrangeme	nt Drawings		
I-DE-3010.2	D-1200-942-P4X-002	GENERAL ARRANGEMENT	
I-DE-3010.2	D-1411-942-P4X-001	M-01 – FLARE SYSTEM – EQUI PLAN	PMENT LAYOUT
Electrical			
I-DE-3010.0	0-5140-700-P4X-003	GROUNDING INSTALLATION TYPIC	CAL DETAILS
I-ET-3010.00	0-5140-700-P4X-001	SPECIFICATION FOR ELECTRICA OFFSHORE UNITS	AL DESIGN FOR
I-ET-3010.00	0-5140-700-P4X-002	SPECIFICATION FOR ELECTRICAL OFFSHORE UNITS	_ MATERIAL FOR
I-ET-3010.00	0-5140-700-P4X-003	ELECTRICAL REQUIREMENTS F	OR PACKAGES
I-ET-3010.00	0-5140-700-P4X-007	SPECIFICATION FOR GENERI EQUIPMENT FOR OFFSHORE UNI	C ELECTRICAL TS
I-ET-3010.00	0-5140-700-P4X-009	GENERAL REQUIREMENTS FO MATERIAL AND EQUIPMENT F UNITS	R ELECTRICAL OR OFFSHORE
I-ET-3010.00	0-5140-741-P4X-004	SPECIFICATION FOR LOW-VOL	TAGE GENERIC ORE UNITS
Mechanical			
I-ET-3010.2	D-1200-200-P4X-001	PIPING SPECIFICATION FOR TOPS	SIDE
I-ET-3010.00	0-1200-200-P4X-115	REQUIREMENTS FOR PIPING FAB	RICATION AND
I-ET-3010.00	0-1200-431-P4X-001	THERMAL INSULATION FOR MARI	TIME
I-ET-3010.00	0-1200-956-P4X-002	GENERAL PAINTING	
I-ET-3010.00	0-1200-956-P4X-003	THERMAL SPRAY COATING APP ALUMINUM	PLICATION OF

·7	TECHNICAL SPECI	FICATION	[№] I-ET-301	0.2D-5412-583-	-P4X-001	REV.	С	
BR	/ TITL 5	ATAPU 2 AND	SÉPIA 2		SHEET 7	of	47	
PETROBRAS	IIILE:	FLARE S	FLARE SYSTEM			INTERNAL		
					ES	SUP		
Instrumenta	ation							
I-ET-3010.2	D-1200-800-P4X-001	INSTRU	IMENTATION	ADDITIONAL	TECHNI	CAL		
		REQUIF	REMENTS					
I-ET-3010.0	0-1200-800-P4X-002	AUTOM	IATION, CONT	ROL, AND				
		INSTRU	IMENTATION C	N PACKAGE	UNITS			
I-ET-3010.2	D-1200-800-P4X-014	AUTOM	IATION INTERF	ACE OF PAC	KAGE UNI	TS		
I-ET-3010.2	D-5412-800-P4X-001	FLARE	GAS RECO	ERY SYSTE	EM - REI	_IEF		
		SYSTE	N					
Naval								
I-RL-3010.2	D-1350-960-P4X-002	NOTION	N ANALYSIS					
Piping and	Instrumentation Diag	ram						
I-DE-3010.2	D-5412-944-P4X-003	HIGH / I	LOW PRESSUR	RE FLARE				
Process Da	ta Sheet							
I-FD-3010.2	D-5412-583-P4X-001	FLARE	(TA-5412001)					
Safety								
I-ET-3000.0	0-5400-98G-P4X-004	FLARE	RADIATION AN	ID GAS DISPI	ERSION S	TUDY	(
I-ET-3010.0	0-5400-947-P4X-002	SAFET	Y SIGNALLING					
Structure								
I-DE-3010.2	D-1354-140-P4X-001	FLARE	TOWER – MAII	N STRUCTUR	E – PART	1		
I-DE-3010.2	D-1354-140-P4X-002	FLARE	TOWER - MAIN	STRUCTUR	E – PART 2	2		
I-DE-3010.2	D-1354-140-P4X-003	FLARE	TOWER - MAIN	STRUCTUR	E – PART (3		
Handling								
I-ET-3010.2	D-5266-630-P4X-001	TOPSID	E'S MECHANIC		G PROCE	DURE	ES	

3 DEFINITIONS

- 3.1 Can: requirements are conditional and indicate a possibility open to the user of the standard.
- 3.2 May: indicate a course of action that is permissible within the limits of the standard (a permission).
- 3.3 Shall: is an absolute requirement, which shall be followed strictly in order to conform to the standard.

- 3.4 Unit: is defined as the FPSO (Floating Production Storage and Offloading), FSO (Floating Storage and Offloading), SS (Semi-Submersible) or Fixed Offshore Unit.
- 3.5 Package Unit or Package is defined as an assembly of equipment supplied interconnected, tested, and operating, requiring only the available utilities from the Unit for the Package operation.
- 3.6 Manufacturer: is defined as the responsible for project, assembly, construction, fabrication, test and furnishing of equipment or components internal to the Package.
- 3.7 Seller: The Company designated as such in the contract or the purchase order.
- 3.8 Terms and definitions presented at ISO-23251 shall be considered on the present document besides the following:
- 3.9 Burner- is composed of a group of gas exit nozzles all fed by a single vertical pipe (burner stack or riser).
- 3.10 Burner stack (or riser) is the vertical/tilted gas pipe which supports the burner and is fixed in the burner manifold. The burner stack keeps the flame high enough to maintain the radiation over the structures, service flare platform and pipes below admissible and/or designed levels.
- 3.11 Flare System is all equipment herein described necessary to burn gas safely and properly, such as Burners, Pilots, Flare Ignition & Monitoring Panel, Flare Turndown Control System Panel, Flare Ignition, Pilot and Monitoring/Control Systems.
- 3.12 Gas exit nozzle the orifices through which the gas is expelled to atmosphere.
- 3.13 Manifold or Burner Manifold is the pipe (header) located on the flare supporting structure end (service flare platform), used to distribute the gas to the burners.
- 3.14 Repad reinforcement pad
- 3.15 Turndown is the maximum to the minimum gas flow limits ratio between which the gas shall be adequately burnt by the flare.
- 3.16 Abbreviations
- CSS: Control and Safety System

	TECHNICAL SPECIFICATION I-ET-3010.2D-5412-583	-P4X-001 REV. C
BR	ATAPU 2 AND SÉPIA 2	SHEET 9 of 47
PETROBRA	<i>s</i> FLARE SYSTEM	INTERNAL ESUP
dB(A):	A weighted noise level measured in decibels	
FPSO:	Floating Production Storage and Offloading	
PLC:	Programmable Logic Controller	
PSD:	Process Shutdown System	
QOV:	Quick Opening Valve	
SIL:	Safety Integrity Level	
4 SY	STEM COMPONENTS (SCOPE OF SUPPLY)	
This sp	ecification describes the following components:	
4.1 Bu	rner Manifold	
4.2 Hig	h and Low-Pressure Burners TIPs;	
4.3 Wii	ndshields (if applicable);	
4.4 Su	pport and Access Structure for Burner Maintenance;	
4.5 Re	tractable devices for flare dismantling;	
4.6 Fla	re Ignition & Monitoring Panel;	
4.7 Ign	ition Systems: pilot ignition system and flare ignition systems;	
4.8 He	at shields over the burner manifolds;	
4.9 Wii	ndproof Pilots;	
4.10	ndividual Pilot Flame Monitoring System by Thermocouples;	
4.11	ndividual Pilot Flame Monitoring System by Sound Signature;	
4.12	Pilot burners backup fuel supply Control System;	
4.13 I	HP Staging Manifold with Turndown Control System (QOVs, m	anual block and
	oypass valves, Buckling Pin Valves, Safety Pressure Transmitt oressure Flare System;	ers, etc.) for High-
4.14	LP Staging Manifold with Turndown Control System (QOVs, ma	anual block and
1	oypass valves, Buckling Pin Valves, Safety Pressure Transmitt	ers, etc.) for Low-
I	pressure Flare System;	

	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001	REV.	С
15]7 Petrobras	ATAPU 2 AND	SÉPIA 2	sheet 10	of	47
		INTERNAL			
		ESUP			

- 4.15 Flare Turndown Control System Panel (based on Safety PLC) in charge of HP and LP turndown control systems;
- 4.16 One portable radiometer;
- 4.17 Four radiometers installed, three observers at the most critical points on the top of process area and one at top of hose reel (bow side), permanently monitoring the flare radiation level; the position of the radiometers shall be defined during Detailing Engineering Design and approved by PETROBRAS;
- 4.18 Anemometer with wind speed and wind direction data acquisition in real time at the Unit Control System;
- 4.19 Flame Retention Device;
- 4.20 Lifting lugs.

5 PROCESS DESIGN DATA

- 5.1 The Flare Process Data Sheet I-FD-3010.1D-5412-583-P4X-001 FLARE (TA-5412001) shall be used for the Flare System Design.
- 5.2 The Flare Tower will be 149 meters long.

6 GENERAL TECHNICAL REQUIREMENTS

- 6.1 The Flare parts and components will be installed outdoors, being exposed to the sea air and the radiation generated by its own operation.
- 6.2 Design, equipment, panels, materials, and labor for manufacturing of the Flare System shall be of high quality to ensure the efficiency and continuity of the service called for during the entire useful life of 30 years.
- 6.3 High-Pressure and Low-Pressure Flares shall be designed for continuous and emergency burning. Flare System's parts and components shall endure continuous burning for an indefinite time, as well as emergency burning periods of at least 24 hours.
- 6.4 The flare Tip and related mechanical components shall be designed to operate and properly perform for the specified service conditions for a minimum of five years without the need for a downtime of the operating facility.

- 6.5 Materials, panels, and equipment shall be supplied fully tested, commissioned and ready to install.
- 6.6 The high and low-pressure flare systems shall be designed to operate simultaneously at their continuous burning design conditions.
- 6.7 The required radiation levels shall not be exceeded in any weather condition and in all continuous or emergency gas flow range at any point over the Unit where human presence is a possibility during operation and maintenance. The topside equipment specific radiation level limits, when specified by the equipment vendors shall also be respected.
- 6.8 All Flare systems parts shall be designed to have a MTBF (Mean Time Between Failures) of more than 5 (five) years and to remain fully operational under stormy weather conditions (wind velocity of 100 km/h).
- 6.9 Pilots shall be windproof and keep burning steady with rain and wind up to 160 km/h.
- 6.10 The Unit will have a single tower to support the Flare for burning both high and low pressure gas.
- 6.11 The windshield or other means of reducing the flame pull-down due to low pressure zones are mandatory in burners of high diameter.
- 6.12 The windshield and attachment of the windshield to the flare burner shall be designed for differential thermal expansion. The material of construction for the flare burner windshield and windshield supports shall be the same as the flare burner material.
- 6.13 The flare tips shall be provided with suitable lifting lugs.

7 RADIATION AND NOISE REQUIREMENTS

- 7.1 For the radiation calculations the Flare Manufacturer shall consider the cases described in the process datasheet I-FD-3010.2D-5412-583-P4X-001.
- 7.2 Radiation calculations shall include solar radiation flux of 789 W/m².
- 7.3 The radiation fluxes shall be calculated using weather conditions described in the METOCEAN DATA I-ET-3A36.00-1000-941-PPC-001_F and I-ET-3A26.00-1000-941-PPC-001_F, including case scenarios with wind velocity of 15, 10, 6, 0.5 m/s

(at 10m height) and wind directions forward-to-rear and rear-to-forward. A full radiation calculation report shall be submitted to Petrobras for approval. These wind velocities shall be corrected for the informed flare tower height according to the document DNV CLASSIFICATION NOTES No. 30.5.

- 7.4 Manufacturer shall guarantee that the maximum allowable total radiation fluxes (as per API STD 521) will not be exceeded at any point over the Unit where human presence is a possibility during occasional operations or maintenance.
- 7.5 The radiation calculations shall consider the modules and process equipment and modules heights, according to the General Arrangement Plan issued by the contractor during the detail engineering phase (a 3-model of the unit can be used). If any equipment requires a specific radiation level limit, the Manufacturer shall guarantee that total radiation flux at the equipment surface will not be exceeded.
- 7.6 The Flame length, and Flame distortion due to lateral wind, can be calculated by the API-521 (using Multipoint Brzustowski and Sommer approach), or other method published in scientific papers and validated by the industry. The use of proprietary models for radiation calculation is allowed when the manufacturer has an industrial scale flare test facility capable of evaluating and validating these models.
- 7.7 Flare radiation simulation as a single point source is not acceptable;
- 7.8 Air transmissivity shall be considered as 1.
- 7.9 Burners Fraction of Heat Radiated (F factor) considered in the calculations shall be informed for the different conditions.
- 7.10 The Flare Manufacturer Contractor shall recalculate the tower length only if the total calculated radiation fluxes over the unit where human presence is a possibility, exceeds the maximum allowable radiation permitted for personal as per API STD 521 table 12.
- 7.11 The anemometer and the four installed Radiometers shall have their readings stored in the platform control system computers. The radiometers will record the average radiation, from the flare at 5-minute intervals. When for two consecutive intervals the average recorded by the radiometer exceeds the limit of 1577 W/m² an alarm shall be started at the Platform Control Room.

- 7.12 Manufacturer shall guarantee a maximum noise level of 90 dB(A) for continuous gas burning on any point where human presence might happen during operation or maintenance over the Unit and 110 dB(A) for emergency gas burning. If necessary, the flare tower length can be extended to achieve this requirement with PETROBRAS approval.
- 7.13 MANUFACTURER shall consider when carrying this calculation out, the Unit linear and angular movements and accelerations. MANUFACTURER shall submit the calculation report to PETROBRAS approval.

8 MECHANICAL DESIGN CONSIDERATIONS

- 8.1 All burners TIPS shall be cast in single pieces of steel with the wall not thinner than ¼ inch. No welded joints or any other type of joints/connections are allowed in the burner TIP. Material shall be delivered in a solubilized condition in accordance with respective ASTM grade material.
- 8.2 Special purpose or special design flare burners (high diameter, air assisted, and so on) for which the technology requires construction methods other than casting shall have its mechanical design calculation submitted for owner. This design calculation shall be complemented with thermomechanical simulations, through which all radiation/temperature design scenarios shall be simulated in order to obtain the thermal stresses distribution on all welds and components. For burners with barrel diameters of 36 in. and above, the minimum thickness of the flare burner barrel shall be 0.35 inch.
- 8.3 All welded joints of both high and low pressure burner, burner manifolds, distribution manifolds and all accessories shall be of full penetration, 100% inspected by radiography (ultrasound inspection is acceptable if the inspection procedure contemplates the materials and the joint set up) and 100% tested with dye penetrant. Threaded connections are not accepted.
- 8.4 Seamless pipes shall be used for low and high-pressure burner stacks as for manifolds too and shall be at least schedule 40S. Welded pipes can only be used with PETROBRAS approval and the use of steel plate parts is not acceptable. Manifolds caps shall be forged.

- 8.5 All welded connections among burner risers and burner manifolds shall be reinforced with double plate despite the flare burner fatigue analysis results. Any support of structures or other pipes on the gas pipe walls shall be protected and reinforced with double plate. The risers shall not have any intermediary weld between its tip and its end/ bottom.
- 8.6 The pilot-thermocouple-ignitor (both) column shall be designed and constructed so as to permit their entire substitution as a sole piece in one hour without any welding execution.
- 8.7 The pilot burner heads shall be a single cast piece, joining gas lines for pilots and FFG. At least, one complete spare set shall be supplied, entirely wired up to panel inlet terminal strip.
- 8.8 The arrangement design at the tower end shall be clean in order to permit the free circulation of the wind/air and to avoid flame disturbance. A low-pressure zone shall be avoided below the flare flames.
- 8.9 The flare tips shall be provided with suitable lifting lugs.
- 8.10 The types of burners shall be defined and clearly specified by the Manufacturer during the proposal's evaluation phase and shall be built according to the material table 1 of this specification.
- 8.11 Each Gas Burner connection flange, when applicable, shall have this protective heat shield encompassing the bolting. The Manifold for distribution of the gas to the burners shall each be protected by heat shield of SS310H of at least 1/8" thick plate. The heat shield shall be able to support the stress of a man walking upon it. The heat shields shall have a triangular section (Chinese hat type) in order to avoid oil drops accumulation
- 8.12 The design shall be such as to permit a ready replacement of the Burner Nozzles and Burners, following the requirements of item 22.13 of this specification. The connections between the stack burners and the flare headers shall be designed to prevent gas leakage mainly when under high thermal stresses. No threaded connections are allowed.

	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001	REV.	С
BR Petrobras	ATAPU 2 AND	ATAPU 2 AND SÉPIA 2			47
		INTERNAL			
	FLARE	ESUP			

8.13 The high-pressure Flare Column shall be of the stand-alone (self-supporting) type, standing on its own pipes. Auxiliary beams can be used to transmit efforts to tower structure (see tower structural drawings).

- 8.14 Flare sizing shall consider:
 - a) the internal pressure,
 - b) the prevailing winds,
 - c) the Production Unit linear and angular movements and their accelerations whether in the production site or during transportation throughout the globe from the construction site to its definitive production site,
 - d) the access structure for maintenance efforts,
 - e) the thrust effect caused by the outlet of the gases,
 - f) its inherent weight,
 - g) the vibration,
 - h) thermal and movement fatigue. Complete fatigue analysis shall be reported to and approved by PETROBRAS
 - i) Others.
- 8.15 It shall also have over-thickness to offset corrosion to the extent of at least 3.0 mm, for equipment, components, and piping above the heat shield on service platform.
- 8.16 Temporary fastening structure for being installed only during the Production Unit transportation shall be designed and installed by the Flare Manufacturer.
- 8.17 The attachment of the Flare Column to the structure shall be detailed by Manufacturer and approved by PETROBRAS. Minimum #300 RF class flanges will be demanded by PETROBRAS on these connections.

9 FLARE SYSTEM DESIGN SCOPE

- 9.1 Design of the Flare System comprises, as a minimum, the following items:
- 9.2 Design of Process and Piping from the Flare Ignition & Monitoring Panel to the ignitor and pilot tips. Design of Process and Piping downstream of the Staging Manifold inlet to the burners. Due to maximum operation temperature allowable of piping

material class, the design shall include the evaluation of the necessity of thermal insulation, and its extent over gas piping, for keeping piping temperature bellow maximum value allowable. This evaluation shall consider the worse flare operation situation and that heat shields might have already been foreseen due to tower structural design as per item 8.2.1.

- 9.3 Detailed structural design of the Flare Panels
- 9.4 Instrumentation Design of the Flare Ignition Panel, the Flare System Panel, and all required logic, including control algorithms for interlocking with Flare Gas Recovery System and of the Turndown and Monitoring Control System for high and low pressure Flare, Pilot-Monitoring Systems, and pilot burners backup fuel supply control.
- 9.5 Electrical Design of Ignition Systems and electric cables for thermocouples.
- 9.6 Mechanical Design of all components, providing the ASTM specifications of all materials used in the flare system.
- 9.7 Thermal Design with evaluation of the maximum radiation levels at the exposed areas at the production Unit and on the Flare tower.

10 LOW-PRESSURE FLARE

- 10.1 MANUFACTURER shall guarantee a smokeless burning of RINGLEMANN 1 (Ringelmann scale) for all continuous burning cases.
- 10.2 The burner design shall be a non-pollutant type, with low NOx emissions. Combustion efficiency shall be greater than 98% to guarantee low HC emissions to atmosphere.
- 10.3 MANUFACTURER shall inform the expected combustion efficiency for high CO₂ burning cases.
- 10.4 Low-pressure flare system will be staged in order to guarantee best burning conditions, provided it complies with Unit restrictions and requirements: maximum space available in deck, maximum weight over flare tower structure, access, and maintenance platform dimensions, etc. It is mandatory the use of staging special valves (QOVs) for controlling the opening of stages. The maximum and minimum

	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	3-P4X-001	REV.	С
L]]] Petrobras	ATAPU 2 AND	ATAPU 2 AND SÉPIA 2			47
		INTERNAL			
	FLARE 3	ESUP			

gas flow rates per stage, the pressure and exit velocity limits shall be submitted to PETROBRAS approval.

- 10.5 The LP FLARE can be supplied as single stage burner if the technology proposed by the Manufacturer is capable of burning efficiently all the low pressure cases described in the I-FD-3010.2D-5412-583-P4X-00, including the smokeless continuous cases. This option shall be confirmed by Performance Tests
- 10.6 The use of High Radiation Burners for low pressure gas burning is acceptable, provided they can work in all conditions and restrictions predicted and required in this specification, such as: flow conditions cases, maximum radiation level, flare tower length of 149 m, combustion efficiency, smokeless burning, flame interference with platform equipment and platform operation, gas assistant availability, equipment, and piping footprint available.
- 10.7 Manufacturer can use a high-pressure gas for assistance provided the maximum rate as specified at I-FD-3010.2D-5412-583-P4X-001- FLARE (TA-5412001). For more details, see I-DE-3010.2D-5412-944-P4X-003 - HIGH/LOW PRESSURE FLARE.
- 10.8 Whenever a minimum assist gas flow has to be maintained for the burner cooling, protection and endurance, the Manufacturer shall clearly inform in the documentation. The absence of this minimum assist gas flowrate shall be alarmed at CSS HMI.

11 HIGH-PRESSURE FLARE

- 11.1 Burner manifolds have to be made of straight horizontal pipes, from which the burner stacks will be supported.
- 11.2 The burner design shall be a non-pollutant type, with low NOx emissions. Combustion efficiency shall be greater than 98% to guarantee low HC emissions to atmosphere.
- 11.3 MANUFACTURER shall inform the expected combustion efficiency for high CO₂ burning cases.
- 11.4 High-pressure gas burning flare system shall be staged in order to guarantee best burning conditions, provided it complies with Unit restrictions and requirements:

	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001	REV.	С
ER Petrobras	ATAPU 2 AND	SÉPIA 2	sheet 18	of	47
	FLARE SYSTEM		INTERNAL		
			ESUP		

maximum space available in deck, maximum weight over flare tower structure, access, and maintenance platform dimensions, etc. In this case, it is mandatory the use of staging special valves (QOVs) for staging valves controlling the opening of stages. The maximum and minimum gas flow rates per stage, the pressure and exit velocity limits shall be submitted to PETROBRAS approval. The Flare supplier shall inform the diameters of all gas exit nozzles.

- 11.5 The use of High Radiation Burners for high-pressure gas burning is acceptable, provided they can work in all conditions and restrictions predicted and required in this specification, such as: flow conditions cases, maximum radiation level, flare tower length of 149 m, combustion efficiency, smokeless burning, flame interference with platform equipment and platform operation, gas assistant availability, equipment, and piping footprint available.
- 11.6 Flaring of the High Pressure Gas shall be effected through low-Radiation. Manufacturer shall inform to PETROBRAS the flare behavior and burning characteristics, and still guarantee all burning parameters and radiation requirements.

12 MATERIAL SELECTION

12.1 Material selection for flare system is a Manufacturer responsibility. PACKAGER/MANUFACTURER may use the same, similar or better material than listed in Table 1. However, in all cases PACKAGER/MANUFACTURER shall submit the detailed material list, including all equipment and their components, for PETROBRAS approval prior to start the manufacture activities. Manufacturer shall provide certificate for all materials specified for every piece of burner and manifolds.

SERVICE	MATERIAL
Piping and accessories, Instrumentation (junction boxes, conduits) and Manifold ^{1,3}	SS 310H (UNS S31009) ²
Flare tip and any device that may be eventually in contact with the flame up to 1.0 m below the burner	ASTM A351CK20 (UNS J94202)

 Table 1 - Recommended minimum quality materials

		TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001	REV.	С	
BR	BR ATAPU 2 AND SÉPIA 2		SÉPIA 2	sheet 19	of 4	47	
PETROBR	45		WOTEM	INTEF			
FEINODNAJ		FLARE	FLARE SYSTEM		ESUP		
Bu th ar	Burner risers/stack, flare tip runners, thermocouple wells, flare heat shield, pilotSS 310H (UNS S31009)²and flame-front pilot ignition lines 1			2			
(1 ma	(1) Any flare system part above the flare tower end (service flare platform floor) and in contact with the main gas flow						
(2)	(2)This stainless steel shall be manufactured with Nb (10 x Cmin.);						
(3))For pip	oing materials see B50 piping spec – I-ET-3	3010.1Y-1200-200-P4X-001.				

- 12.2 The use of carbon steel is limited to a project temperature of 350°C.
- 12.3 The materials of flare system shall be able to handle the process fluids with H₂S and CO₂. The requirements of ISO 15156 shall be complied.
- 12.4 Manufacturer shall isolate dissimilar materials to avoid galvanic corrosion.
- 12.5 In the construction of burners, burner tip or head ends of the pilot-monitoring-ignition soldered joints is not allowed.

13 FLARE SERVICE PLATFORM

- 13.1 A service platform shall be constructed at the end of the flare supporting structure (tower). Though flare manufacturer is not responsible for the design, he is the responsible for supplying PETROBRAS with all the documentation and information necessary for design, construction and installing this item at the flare tower.
- 13.2 The service platform arrangement shall provide enough space for combustion air movement. The air shall reach all flames, even the ones at the center of all flames, allowing the combustion air coming from their sides and from below.
- 13.3 The burner tips shall be high enough above the service platform floor for allowing the combustion air coming from below (htip > 3m).
- 13.4 The floor shall be grated to allow vertical air movement, which contributes for combustion and for cooling of the floor itself. Underneath the floor grate, two layers of metal screen heat shield of SS316L shall be installed for shading the service platform structure and the boom structure from the flame radiation. The metal screens and the grate shall be installed in attached sections not heavier than 35 kg for easy removal.

	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001	REV.	С
BR	ATAPU 2 AND	SÉPIA 2	SHEET 20	of	47
PETROBRAS			INTE	RNAL	
			ES	UP	C 47

- 13.5 As a general rule, the arrangement shall be clean for avoiding recirculation zones promoted by the wind on the leeward side of the structures and of the flare parts. Recirculation zones can cause flame impingement on the structures and on the flare itself, which can cause their premature destruction. The arrangement shall be clean and open sighted from all directions. The wind shall travel all across the burner forest considering the flames obstruction as well.
- 13.6 The expected radiation flux on top of the service platform floor shall not be higher than 50,000 W/m².
- 13.7 Several 70-cm-wide access corridors for accessing all burners and pilot-ignition-T/C columns shall exist around the entire service platform and among different groups of burners.
- 13.8 The entire flare service platform edge shall be protected with an elevated vertical plate for preventing tools and parts from falling down. This structure shall be "Windstorm Shake Proof" and have a long life at the offshore environment and resist to the extreme thermal radiation fluxes.
- 13.9 For handling of Flare Tips, it will be necessary a special portable structure to be installed on top of flare tower in order to allow their maintenance. SELLER shall issue a detailed procedure for this operation considering solutions available in the market and shall be installed lashing points and pad eyes described in the procedure. The total load capacity and stresses expected on the top of Flare Tower for this maintenance shall be foreseen and present in a structural calculation report. For more details, please refer to I-ET-3010.2D-5266-630-P4X-001.
- 13.10 An access structure for maintenance of the pilots, ignition and thermocouple tips supported on the flare headers shall be supplied and considered during the flare design.
- 13.11 All Flare flanges and connections shall be less than 1.5 meters above the flare operation/maintenance platform's floor level.

	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001	REV.	С
<i>13</i> 77	ATAPU 2 AND	SÉPIA 2	SHEET 21	of	47
PETROBRAS			INTERNAL		
PEIKOBKAS	FLARE	FLARE SYSTEM		ESUP	

14 PIPING

- 14.1 Flare Manufacturer shall use I-ET-3010.2D-1200-200-P4X-001 PIPING SPECIFICATION FOR TOPSIDE and I-ET-3010.00-1200-200-P4X-115 -REQUIREMENTS FOR PIPING FABRICATION AND COMMISSIONING for piping, valves, and materials.
- 14.2 Each QOV installed in the Flare turndown control system shall have its own Buckling Pin Valve (BPV) protection in a bypass line. The set of QOV and BPV shall have a piping arrangement using two manual isolation valves (full bore) and one by-pass manual valve (full bore) for maintenance purposes only. The isolating valves shall be locked open during normal operation. The manual valves shall have proper interlock system in order to prevent missing operational maneuver.
- 14.3 QOVs, BPVs and Manual Valves shall be provided with limits switches linked to the Flare Gas Recovery System Panel. The status (open/close position) of these devices shall be available at Unit SOS.
- 14.4 All the flare's branch connections shall be through an extruded butt-welding /reducing butt-welding tees, or socket welding - forged steel fittings. The use of connections or branches as "Stub-in" branch, "Shaped Nipple", "fabricated Tees", "Lateral" (straight or reducing), "Flat closure" are all not acceptable.
- 14.5 The use of Plain End for the pilot ignition and the pilot gas line are not acceptable as well. They shall be of socket welding fitting (coupling) type.
- 14.6 All flanged service and pilot gas connections shall be kept at the same height (flare tips flanges).
- 14.7 The Strainers in the pilot gas line are in the scope of supply. The drain pots and drain valves to the piping ignition lines and the pilot gas lines are in the scope of supply. For the drain pots and drain valves to the piping ignition lines and the pilot gas lines that are below the service flare platform floor, it shall be in SS316. For materials above the flare tower end (service flare platform floor) refer to Table 1.
- 14.8 Above the service platform, the piping materials selection and assembly details shall follow the requirements established in B50 piping spec from I-ET-3010.2D-1200-P4X-001.

		TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001	REV.
BR		ATAPU 2 AND 3	SÉPIA 2	SHEET 22	of 47
PETROBRAS	s		SYSTEM	INTE	RNAL
				ES	UP
15 FLARE IGNITION AND MONITORING SYSTEM					
15.1	For	instrumentation and automatio	on, Flare System Package	classificat	ion shall
	refe	er to I-ET-3010.2D-1200-800-F	P4X-014 - AUTOMATION	INTERF	ACE OF
	PA	CKAGE UNITS and shall follow	the package requirements	according	to I-ET-
	301	I0.00-1200-800-P4X-002 -	AUTOMATION, CO	ONTROL,	AND
	INS	STRUMENTATION ON PACKAG	GE UNITS, and shall be in a	ccordance	with the
	I-E	T-3010.00-1350-940-P4X-001 -	SYSTEMS OPERATION F	PHILOSOP	ΉY.
15.2	Fla	re Ignition & Monitoring Panel (F	PN-TA-5412001-01)		
	a)	The Flare Ignition & Monitorin	ng Panel shall be of the rac	k type, sta	Indalone
		(self-supported) structure and	contain the required instru	uments, ec	luipment
		and accessories required for o	operation of the ignition sys	stem only.	
	b)	The panel shall be suitable for	or operation in a classified	area acco	ording to
		IEC, Group IIA, T3 and Zone	e 2 and shall have IP 56	level of p	rotection
		(weatherproof) and sealed at	its entrances and exits w	ith cable g	lands or
		sealing units.			
	c)	The flare operator shall be sh	neltered by the panel from	the rain, s	unshine,
		and flare total radiation. It shal	ll be able to properly operat	e the syste	m under
		difficult environmental condition	ons. Therefore, the Flare Ig	nition & M	onitoring
		Panel shall have a roof, a pa	artial lateral wall, or any ot	her solutio	n, which
		might be discussed during De	etailing Engineering Design		
	d)	Special attention shall be tak	en to make sure that durin	ng the ope	ration of
		the transformer/ignitor, there	shall be no interference w	ith the ope	ration of
		any electronic instruments. T	he electronic and electrica	al instrume	nts shall
		therefore be located 600 mm	away from it.		
	e)	Separated terminal strips sha	all be forecast in the flare	panel for g	athering
		interface signals. All panel inle	ets/outlets shall be delivered	d properly	plugged.
		This panel mounted instrum	ents casings shall be ea	rthen to th	ie panel
		structure and the latter in i	its turn shall be connected	ed to the	metallic
	C)	structures.			
	t)	The panel shall have interfac	ce signals with CSS. The	signals the	mselves
		and their requirements are de	escribed in I-E I-3010.2D-12	200-800-P	4X-014 -
		AUTOMATION INTERFACE (UF PACKAGE UNITS.		

	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001 Rev. C
BR	ATAPU 2 AND S	SÉPIA 2	SHEET 23 of 47
PETROBRAS	FIARE S	SYSTEM	INTERNAL
			ESUP
g)	The Flare Ignition & Monitori	ng Panel shall be also inte	erconnected to the
	Unit CSS - Control and Safet	y System and SOS – Sup	ervisory Operation
	System in order to allow ope	erator at Central Control F	Room (CCR) send
	remote command for pilots fla	re ignition.	
h)	All logic carried out by PN	-5412001 shall be acces	sible read-only to
	Petrobras. Writing and editir	ng shall have means of a	access control via
	password.		
15.3 lgı	nition System		
a)	The flare system shall have a	complete four ignition sys	tems installed and
	ready for use. The all of ignition	on systems (A), (B), (C) ar	id (D) are at scope
	of supply of flare manufacture	er.	
b)	The first and the second on	e (A and B type) will fun	ction as the main
	systems while the Flare Gas	s Recovery System Comp	pression Unit (UC-
	5412001) is in operation.		
c)	In case of the Flare Gas Recov	very System Compression	Unit (UC-5412001)
	is not operating and the flare	system is working as an op	en flare, the C and
	D type shall be available for u	se.	
A	- Sparking Pellets Type		
	· The second second second	a	1
		the pellets or small roc	kets propelled by
	compressed air. The pellet is	sent in high velocity throug	h a small diameter
	pipe from the platform to the	e flare tip where it is ignite	d close to the flare
	burners. A large cloud of spa	arks ignites the flaring gas.	A certain delay will
	have to exist between the	Quick Opening Valve op	ening (flaring gas
	delivery) and the pellet disp	atch because a gas-air m	ixture cloud has to
	exist near the flare tip.		
i	i. The system shall be manu	ally or automatically ignite	ed (when the UC-
	5412001 is out of operation)	. Remote ignition from Cer	ntral Control Room
	(CCR) shall also be foreseer	n.	
В	- Continuous Electric Sparking Ty	уре	
	i. The system has several hi	gh energy sparking devic	es at the flare tip
	(burners). The sparking dev	ice can either run continue	ously or be started

only when the Quick Opening Valve opens. However, enough reliability

··	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583-	P4X-001	REV.	С
BR	ATAPU 2 AND	SÉPIA 2	SHEET 24	of	47
ROBRAS	FLARE S	SYSTEM	INTE	RNAL	
			ES	UP	
	shall be demonstrated on the	he starting of the non-cont	inuous op	tion a	and
	enough endurance shall be	e demonstrated by the cor	ntinuous o	ne. T	his 🖥
	system shall have interface	with Flare Gas Recovery S	ystem Reli	ef Pa	anel
	(PN-5412001) and CSS-PS	D.			
С	- Electro-electronic Type				
	i. A third ignition system shall be	provided and use electricit	y as energ	y sou	irce
	to ignite the pilot.				
i	i. This ignition system shall au	itomatically re-ignite the p	ilots until t	the fl	lare
	monitoring systems detect the	e presence of flame on the	pilot tip.		
ii	i. The pilots shall be ignited from	om manual or automatic c	ommand f	rom	the
	Flare System Ignition & Mor	nitoring Panel (PN-TA-541	2001-01 -	FLA	RE
	IGNITION & MONITORING	PANEL). Remote pilot ign	ition from	Cen	tral
	Control Room (CCR) shall als	so be foreseen.			
iv	7. The spark plug shall be instal	led away from the flame zo	ne.		
D	- Flame Front Type				
	i. The Ignition System shall b	e of the flame front type. I	nstrument	air, f	fuel
	gas and power electricity sh	all be available.			
	ii. The fuel gas shall be mixed	with the instrument air to pe	ermit ignitic	on ins	side
	a combustion chamber. If c	ompressed air and fuel gas	s are requi	ired a	at a
	lower pressure than they ar	e supplied, the Manufactur	er shall su	pply	the
	necessary pressure reduction	on valves. A hand-operated	needle va	lve sl	hall
	be installed downstream the	pressure reduction valve in	n the air lir	ne.	
i	ii. Fuel gas feed line shall be au	utomatically blocked in case	the pressu	ure di	rifts
	to a value considered as be	eing unsafe (an alarm shal	l be genei	rated	for
	local and remote indication f	or this event).			
i	v. The mixture of gas and air	shall be set alight by mea	ns of a sp	ark p	olug
	actuated through a push-	button and energized by	/ a high	volta	age
	transformer. A sight-glass	shall be provided for obse	erving the	igniti	ion,
	which shall be installed clo	ose to push-button so that	the operation	ator o	can
	observe the ignition and pre	ss the button without displa	cement.		
	v. The transformer casing shal	I have lamps to indicate "e	nergized" a	and "	de-
	energized", and a push-butte	on for ignition.			

	TECHNICAL SPECIFICATION [№] I-ET-3010.2D-5412-583	-P4X-001	<i>.</i> С	
BR	ATAPU 2 AND SÉPIA 2	SHEET 25 of	47	
PETROBRAS		INTERN	AL	
	TEAKE STSTEM	ESUP		
V	i. A flame propagation manifold with the necessary t	hree-way fire	e-safe	
	valves shall be installed in the Flare Ignition & Monitoring Panel, to allow			
	the operator to direct the flame towards each pilot he	wishes to lig	ht up.	
	The arrangement of these valves shall be such as to make it impossible			
	for the flame front to be blocked.			
vi	i. Drains with proper access shall be installed to drain w	ater resulting	g from	

- vii. Drains with proper access shall be installed to drain water resulting from each ignition process. Drains shall be provided not only for the lowest point in the FFG (Flame Front Generator) line, but for every low point of accumulation (gooseneck). Drains shall be installed inside the Flare Ignition & Monitoring Panel and have easily access to operation.
- viii. The Flare Ignition & Monitoring Panel shall clearly indicate, written in a SS steel plate attached to the flare panel, the pressures necessary to achieve ideal mixture of gas and air and other main instructions for the operators. Rotameters shall be furnished to indicate volumes of gas and air necessary to achieve ideal mixture of gas and air.
- ix. Provision shall also be made for a piezoelectric ignition system to be used in case of electric power shortage on the production Unit.
- 15.4 Pilot System
 - d) The number of pilots for each burner shall be in accordance with API STD 537. For special applications such as low LHV burners more pilots may be required.
 - e) The pilots shall be fixed heat release, self-inspirating, pre-mix burners.
 - f) All pilots shall be remotely supervised from CSS' HMIs (through Flare Ignition & Monitoring Panel) and they shall also be manually/automatically re-ignited from the Flare Ignition & Monitoring Panel.

15.5 Pilot Monitoring System

- a) The pilot monitoring signal shall be available in the CSS.
- b) All pilots shall be monitored by two pilot monitoring systems,(i) thermocouples and (ii) sound signature.
 - (i) Thermocouples

Two thermocouples shall be installed for each pilot flame. The thermocouples shall not be in direct contact with the pilot flame for long lasting design (more

	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001	REV.	С	
BR	ATAPU 2 AND SÉPIA 2		sheet 26	of	47	
BR petrobras	FLARE SYSTEM		INTERNAL			
			ESUP			

than 2 years campaign). However, the flame detection time interval shall be smaller than 2 minutes.

(ii) – Sound Signature

The Sound pilot monitoring system consists of an acoustic sensor and a signal processor. The acoustic sensor receives pilot sounds through the flame front generator (FFG) line. The acoustic data are conveyed from the sensor to the signal processor. The signal processor then analyzes the acoustic data and signals the pilot flame status - either on or off.

Individual acoustic sensors shall be installed for each pilot flame in its corresponding FFG line close to the Flare Panel. The distance between the pilot flame and the acoustic sensor in the FFG line shall not be greater than 105 meters.

16 FLARE TURNDOWN CONTROL SYSTEM

- 16.1 The Flare Turndown Control System based on a staged manifold will be performed by the Flare Panel Safety PLC. It will be based upon the monitoring of HP gas flow, and pressure measured at the HP header.
- 16.2 The Flare Gas Recovery System Relief Panel (PN-5412001), based on safety programmable logic controller (Safety PLC), is responsible for controlling and safety interlocking the Flare System, and shall be used to command the stage on-off valves (QOVs) and acquire flare monitoring data, in order to anticipate the QOVs opening when a sudden gas pressure increase occurs at the production plant, promoting adequate burning conditions.
- 16.3 These QOVs shall be of quick-opening type, not expending more than 3 (three) seconds (to be confirmed during detailed engineering design phase) travelling between fully closed to fully open positions. The Flare Turndown Control System Panel shall be responsible for data availability and remote actuation at Unit CSS Control and Safety System.
- 16.4 All instruments and controls shall be suitable for marine environmental according to the same standards and requirements applicable for the project. Flare

	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001	REV.	С	
<i>:</i>];}	ATAPU 2 AND	SÉPIA 2	SHEET 27	of	47	
PETROBRAS				INTERNAL		
1 ETHODIAO	FLARE		ES	UP		

Manufacturer shall ensure that the equipment is properly certified for the specified classification.

- 16.5 Flare Manufacturer shall assume total responsibility for the instrumentation, control, design, engineering, operational philosophy, and the Safety PLC based control and safeguarding systems. These are part of Flare Manufacturer's scope, unless specified otherwise.
- 16.6 Flare Gas Recovery System Relief Panel (PN-5412001) Package classification shall be in accordance with I-ET-3010.2D-1200-800-P4X-014 - AUTOMATION INTERFACE OF PACKAGE UNITS, and I-ET-3010.00-1200-800-P4X-002 -AUTOMATION, CONTROL, AND INSTRUMENTATION ON PACKAGE UNITS. This Panel shall be in charge of the proper and safe operation of the stage on-off valves (QOVs) and it shall be interconnected to the Unit CSS - Control and Safety System and SOS - Supervision and Operation System.
- 16.7 Flare Turndown Control System Panel (PN-TA-5412001-02) shall be installed indoor, in air conditioned area, at Automation & Electrical Panels Room (AEPR).
- 16.8 Flare Turndown Control System Panel shall be in charge of controlling both HP and LP Staging Manifolds.
- 16.9 Minimum Safety Requirements
 - a) The flare turndown control function shall be understood also as a safety function, and it shall be implemented according to IEC-61508/61511 SIL requirements.
 - b) For the HP and LP Staging Manifold, the flare turndown control/safety loops (SIFs - Safety Instrumented Functions) shall be implemented according to SIL requirements as defined in safety analysis to be carried out during detailed engineering design phase.
 - c) SIL requirements shall apply to the flare turndown control system as indicated below:
 - Safety pressure transmitters (initiators);
 - Logic solver, including I/O cards, network, power supply and processors;
 - Application program;

	TECHNICAL SPECIFICATION I-ET-3010.2D-5412-583	-P4X-001 REV. C
BR	ATAPU 2 AND SÉPIA 2	SHEET 28 of 47
PETROBRA	<i>s</i> FLARE SYSTEM	INTERNAL
		ESUP
	All final elements, e.g., QOV/actuator sets, with respecti	ve solenoid control
	cabinets, if applicable;	
•	 All appurtenances necessary to build the system. 	
16.10	During Detailed Engineering Design phase, Flare Manufacture	er shall present for
	PETROBRAS approval all documentation in order to certify that	t SIL requirements
	were achieved. The Safety Requirements Specification (SRS	S) shall include all
	Safety Instrumented Functions (SIF's).	
	Note 1: Each QOV set shall have a Buckling Pin Valve (BPV) as a backup and
	this BPV shall be considered as an independent layer of pl	rotection with high
	reliability and shall comply with PFD (Probability of Failure on	Demand) equal to
	10 ⁻² .	
	Note 2: Process design calculations shall be undertaken by F	Flare Manufacturer
	during detailed engineering design phase in order to define t	he Flare turndown
	control system response times that are sufficiently short to pre	vent unacceptable
	process conditions. Flare turndown control system respon-	se times shall be
	defined in that phase and shall be considered for selection of valves (QOVs).	of the stage on-off
16.11	Flare Turndown Control System shall be fail-safe.	
16.12	Logic Solver Main Requirements	
	a) In order to guarantee SIL reliability, an independent saf	ety programmable
	electronic system (Safety PES), based on Safety PLC,	shall be supplied,
	designed, and installed in compliance with the required s	afety integrity level
	(SIL).	
	b) The logic solver shall be in charge of both HP and LP	Staging Manifold
	Turndown Control Systems.	
16.13	The logic solver shall comply with the risk reduction factor	(RRF) required by
	safety analysis, at least SIL-1 requirements. Safety PES shall	consist of:
	a) Redundant CPUs (processors) with special hardware fea	tures for functional
	safety, a special operating system and embedded fur	nctions for failures
	control, communication boards, I/O boards, memor	y boards, power

		TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583 [.]	-P4X-001	REV.)
BR	-	ATAPU 2 AND S	SÉPIA 2	SHEET 29	of 47	,
PETROBRAS	s	FLARE S	SYSTEM	INTE		
		suppliers, racks, etc.:				
	b)	Library with approved safety f	unction blocks:			
	5)	Creasial configuration tool for (
	C)	Special configuration tool for a	SIF parameters;			
	d)	Tool to confirm that the down source application software;	nload application software	is identica	al to the	Э
	e)	Safety users' manual descri equipment in order to build sa	bing instructions on how fety applications that comp	to use the	ə actua 361508	וו ג.
16.14	In ((saf and	order to obtain both characteri fety), redundant controllers shal I Flare Turndown Control Syster	istics of high availability a Il be the core of Flare Gas n Safety PES.	and high r Recovery	eliability Systen	Y N
16.15	Saf equ Bra Exio	ety PES SIL certification is m ipment assessed by an indeper zilian accreditation body (INME da or similar.	andatory and preference Ident organization that has TRO) or the equipment is	shall be been appi certified	given to oved by by TÜV) y ',
16.16	Flai prog fund fund prog to C safe	re Manufacturer shall supply all gramming, configuration, cabin ctional system, whether or not sp ctional system in this speci grammed and configured Safet CSS. The interface with CSS sha ety actions/monitoring execution	Safety PES hardware, ap nets, wiring, parts and ma pecifically itemized in this s ification also includes a y PES interface available all be kept to the minimum in.	oplication s aterials for pecification a fully fu for commu necessary	oftware a fully n. A fully nctional inicatior for CSS	, , , , , , , , , , , , , , , , , , ,
16.17	The Saf	e Safety PES shall be able to co ety PES logics.	ommunicate with CSS, with	hout impac	t on the	Э
16.18	Saf inpu Saf of 9	ety PES shall include hardware uts and/or redundant outputs m ety PES for SIL applications sha 00%.	and software diagnostic fac ay be used in order to ach Il demonstrate a minimum s	cilities. Log ieve SIL re safe failure	ic voted liability fractior	ל - ר
16.19	Eac exc inpu	ch analog input channel shall ha eeds the 4 to 20mA range. It is ut and output modules to connec	ve resources for detecting recommended the use of a ct the redundant initiators a	signal failu channels ir and/or actu	re wher ı distinc ators.	ר t:

	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001	REV.	С	
BR	ATAPU 2 AND	SÉPIA 2	SHEET 30	of	47	
PETROBRAS	FLARE SYSTEM		INTERNAL			
			ESUP			

- 16.20 The components of Safety PES shall be provided with built-in redundancy or fault tolerance so that a single card failure shall not cause a loss on Flare Gas Recovery System and Flare turndown control system functionality.
- 16.21 Component parts of the Safety PES shall be arranged such that a loss of signal or power causes a safe failure.
- 16.22 The signals that shall be sent to CSS through network shall be defined during Detail Engineering Design, in strict accordance between PETROBRAS and Flare Manufacturer.
- 16.23 Instrumentation minimum requirements
 - a) Main characteristics of Quick Opening Valves (QOV): pneumatic actuator, tight shut-off, fail open and equipped with 2 (two) limit switches (open and close). It shall open in a time not superior to 3 (three) seconds (to be confirmed during detailed engineering design phase).

Note 3: In order to meet SIL requirements, it shall be demonstrated to PURCHASER by MODULE SUPPLIER that each QOV (including solenoid valve and actuator) is suitable for use in the safety instrumented functions considering the requirements defined in IEC 61508/61511, including Minimum Hardware Fault Tolerance of final elements. Technical data of valve manufacturer and safety certificate issued by a recognized entity, such as TÜV, Exida and similar, related to QOVs` reliability, failure data, and similar shall be presented to PURCHASER in order to proof the adequacy of the specified QOV for the safety application.

Note 4: The QOV back-ups (Buckling Pin Valves) shall be taken into account as an independent layer of protection with high reliability and shall comply with PFD (Probability of Failure on Demand) equal to 10⁻². These safety devices – BPVs - (similar to safety relief valves) shall not be taken into account as a Hardware Fault Tolerance for the QOVs. Flare Manufacturer shall inform PETROBRAS the technical data regarding the QOV back-ups (Buckling Pin Valve) in order to proof the PFD is achieved.

b) Actuators shall be properly sized to operate the QOV under the maximum specified operating conditions. Actuator configuration and selection shall be such that the actuator is suitable to be applied in the SIL loop as defined.

		TECHNICAL SPECIFICATION I-ET-3010.2D-5412-583	-P4X-001 REV. C	
BR petrobras		ATAPU 2 AND SÉPIA 2	SHEET 31 of 47	
PETROBRA	s	FLARE SYSTEM	INTERNAL	
			ESUP	
	c)	Safety pressure transmitters (initiators) shall have failure	diagnosis features	
		and be dedicated to Flare Gas Recovery System duty o	nly and, therefore,	
		separated, and independent from other field devices.		
16.24	Te	sts		
	a)	Flare Manufacturer shall be responsible for performing al	I the required tests	
	,	associated to the automation. control. and instrumentation) of the package as	
		a whole, including Factory Acceptance Tests (FATs) an	d Site Acceptance	
		Test (SAT).	·	
	b)	Prior to execution, Flare Manufacturer shall submit	for PETROBRAS	
	,	approval the planning and test procedures for FAT as wel	l as for SAT.	
	c)	Testing, performance validation, verification and comm	issioning activities	
	,	shall demonstrate that the Safety Requirement Specification	on designed for the	
Flare Gas Recovery System and Flare turndown control system				
	reached.			
	d)	Flare Gas Recovery System and Flare turndown control s	ystem shall be fully	
		tested in specific period of time (proof test interval) in o	rder to detect and	
		correct dangerous failures to maintain the required perform	nance. These tests	
		shall cover all equipment that are part of the Flare Gas Red	covery System and	
		Flare turndown control systems.		
	e)	Flare Manufacturer shall present a detailed maintenance	inspection plan to	
		be executed during Unit lifetime in order to keep the SIL re	eliability.	
	f)	All electronic modules or components utilized within the Pl	ES system shall be	
		functionally tested in prior to system assembly.		
	g)	There shall be documented test procedures to verify the	e whole Flare Gas	
		Recovery System and Flare turndown control system, inc	luding the initiators	
		and final elements.		
	h)	Flare Manufacturer shall be responsible for providing pe	ersonnel, material,	
		necessary equipment and instruments for all the tests, i	ndependent of the	
		place where they are carried out, until the final co	ommissioning and	
		acceptance of the Unit by PETROBRAS.		
	i)	Any component of hardware or software failed during a tes	st shall be re-tested	
		as necessary to prove rectification has been completed sa	atisfactorily.	

	TECHNICAL SPECIFICATION№I-ET-3010.2D-5412-583-P4X-001REV.C
BR	ATAPU 2 AND SÉPIA 2 SHEET 32 of 47
PETROBRAS	FLARE SYSTEM
J)	I he devices shall have self-diagnosis features to detect on-line failures. Input
	signals line monitoring and partial stroke test routine shall be available.
16.25 Sa	fety Requirements Specification
a)	During the detailed engineering design phase, Flare Manufacturer shall
	generate a Safety Requirements Specification (SRS). The SRS shall define
	the technical requirements needed to SIF implementation, in order to
	guarantee tolerance against spurious fails and SIL reliability.
b)	The SRS shall include the following information:
	• Process description and summary of the documented hazard scenarios
	generated from the hazard analysis process;
	 Descriptions of functions performed by the SIFs;
	SIL calculations for each SIF;
	Flare Gas Recovery System and Flare turndown control system process
	measurements with their normal operating ranges and applicable trips
	points;
	• Safe state of the process for each identified SIF;
	• Response time requirements for the Flare Gas Recovery System and
	Flare turndown control system to bring the process to safe state;
	• Requirements for overrides, inhibits and manual shutdowns, including
	how they will be reset;
	• Considerations for process common cause failures such as corrosion,
	plugging, power supply etc.;
	• Considerations regarding Flare Gas Recovery System and Flare
	turndown control system, requirements for proof test, procedures etc.;
	• Special start-up requirements and Flare Gas Recovery System and Flare
	turndown control system restart considerations;
	Interfaces to Unit CSS and SOS;
	Requirements for proof test interval;

ER Petrobras	TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	3-P4X-001	REV.	С
	ATAPU 2 AND	ATAPU 2 AND SÉPIA 2		of	47
			INTERNAL		
	FLARE	FLARE SYSTEM		ESUP	

- Required testing frequencies, PFD and spurious MTTF.
- c) Safety integrity data for all instruments, QOVs and devices shall be informed.

17 ELECTRICAL REQUIREMENTS

- 17.1 All flare electrical system and the electrical source available shall comply with I- ET- 3010.00-5140-700-P4X-003 – ELECTRICAL REQUIREMENTS FOR PACKAGES FOR OFFSHORE UNITS.
- 17.2 Electrical equipment and materials shall comply with requirements of I-ET-3010.00-5140-700-P4X-002 - SPECIFICATION FOR ELECTRICAL MATERIAL FOR OFFSHORE UNITS, I-ET-3010.00-5140-700-P4X-007 - SPECIFICATION FOR GENERIC ELECTRICAL EQUIPMENT FOR OFFSHORE UNITS, I-ET-3010.00-5140-700-P4X-009 - GENERAL REQUIREMENTS FOR ELECTRICAL MATERIAL AND EQUIPMENT FOR OFFSHORE UNITS and I-ET-3010.00-5140-741-P4X-004 - SPECIFICATION FOR LOW-VOLTAGE GENERIC ELECTRICAL PANELS FOR OFFSHORE UNITS.
- 17.3 Electrical equipment shall be certified according to hazardous areas classification. Electrical equipment installed in external safe areas, that shall be kept operating during emergency shutdown ESD-3P or ESD-3T shall be certified with the type of protection EPL suitable for installation in hazardous areas Zone 2 Group IIA temperature T3, according to IEC 61892.
- 17.4 The thermosensor junction boxes, extension wires, conduits, seal shall be in heat resistant material because they are subjected to extreme thermal radiation fluxes. The junction boxes above the flare service platform floor shall have a door and have an additional plate on top for shielding the junction boxes from the thermal radiation. All wire connectors shall be made in ceramic material, which shall resist the extremely high temperature.
- 17.5 For junction boxes please refer to I-ET-3010.00-5140-700-P4X-002 SPECIFICATION FOR ELECTRICAL MATERIAL FOR OFFSHORE UNITS.
- 17.6 Just underneath the service platform floor, a single large junction box shall connect all wires connecting the flare panel to the flare. This junction box shall be easily accessible.

		TECHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001	REV.	С
BR		ATAPU 2 AND	SÉPIA 2	sheet 34	of	47
PETROBRA	s		OVOTEM	INTERNAL		
		FLARE		ES	UP	
17.7	Fo	r cables on the flare tower,	refer to I-ET-3010.00-51	40-700-P4	X-00	2 -
	SP	PECIFICATION FOR ELECTRIC	AL MATERIAL FOR OFFS	HORE UN	ITS.	
17 0	A 11	alastriaal connections for all kin	d of aquipment shall be au	itabla far a	norot	lion
17.0	All		u ol equipment shall be su		perat	
	in a	a classified area according to IEC 61892-1, Group IIA, 13 and Zone 2 and shall				
	ha	ve IP 56 level of protection (wea	therproof), as well all juncti	on boxes.		
17.9	Gr	ounding installations inside the	package shall comply with	requireme	ents c	of I-
	ΕT	-3010.00-5140-700-P4X-001 - S	SPECIFICATION FOR ELE	CTRICAL I	DESI	GN
FOR OFFSHORE UNITS and I-DE-3010.00-5140-700-P4X-003 - GROUN					JNDI	NG
	INS	STALLATIONS TYPICAL DETAI	ILS.			
18 PU	JRG	E SYSTEMS				
18.1	Th	e flare headers will be provided	d with a purge system tha	t can oper	ate v	with
	niti	rogen or low-pressure fuel aas	s to ensure continuous pi	urging of t	he fl	are
		5 1 5		0 0		

system. Besides, the high pressure flare tip shall be provided with fluidic seals to reduce purge gas requirements. Since pressure drop in low pressure flare system is critical, this requirement is not mandatory. Manufacturer shall guarantee that available purge gas flowrate and flare systems backpressure are not exceed as stated in I-FD-3010.2D-5412-583-P4X- 001.

19 PAINT AND COLOR

- 19.1 Paint system shall be according to I-ET-3010.00-1200-956-P4X-002 GENERAL PAINTING.
- 19.2 Flare system shall be coated with TSA according to I-ET-3010.00-1200-956-P4X-003 THERMAL SPRAY COATING APPLICATION OF ALUMINUM.
- 19.3 The Burners made with SS 310H are excepted from being coated as well as other equipment and components of same material.
- 19.4 Color code adopted shall be in accordance with DR-ENGP-I-1.15 COLOR CODING.

20 MOTION REQUIREMENTS

20.1 The necessary design data and information on motion requirements are given inI- RL- 3010.1Y-1350-960-P4X-009 - MOTION ANALYSIS.

21 OPERATION REQUIREMENTS

21.1 The equipment supplied shall be suitable for the environment and range of ambient condition including, atmospheric pressure, relative humidity, rainfall, air temperature (dry bulb), characteristics monthly values and wind motions defined at the document I-ET-3A36.00-1000-941-PPC-001_F - METOCEAN DATA and I-ET-3A26.00-1000-941-PPC-001_F – METOCEAN DATA.

22 ADDITIONAL INFORMATION IN TECHNICAL PROPOSAL

- 22.1 The data here demanded shall be delivered during proposal phase and resubmitted, with complete technical details, during the Manufacturer's flare system design.
- 22.2 The Flare Manufacturer shall demonstrate deeply knowledge of the technology and prove to have already supplied at least five (5) equipment/burners like those being proposed to compose the ATAPU 2 & SEPIA 2 flare system.
- 22.3 FLARE RADIATION
 - 22.3.1 Manufacturer shall supply, for all the burning conditions, continuous and emergency, described in the data-sheet I-FD-3010.2D-5412-583-P4X-001, the flare total radiation fluxes (W/m²) over the Unit. Solar radiation has to be included in the calculations (789 W/m²). The proposal shall inform the complete inlet serial data considered in order to obtain that radiation values (wind speed and direction, flow rate, gas low heating value, distances, etc.). The radiation profiles shall include the following radiation levels as a minimum:
 - 500 BTU/h.ft²
 - 1000 BTU/h.ft²
 - 1500 BTU/h.ft²

	TE	CHNICAL SPECIFICATION [№] I-ET-3010.2D-5412-	583-P4X-001 REV. C
BR		ATAPU 2 AND SÉPIA 2	SHEET 36 of 47
PETROBRAS	IIILE:	FLARE SYSTEM	
		- 2500 DTU/b #2	ESUP
		• 2500 BT0/11.11 ⁻	
2	22.3.2	The Flare supplier shall inform the diameters of	all gas exit nozzles,
		which will be verified during the Acceptance Tests.	
22.4 C	DISPE	RSION OF UNBURNT GASES	
2	22.4.1	Studies shall consider all the safety requirements	in accordance with I-
		ET-3000.00-5400-98G-P4X-004 - FLARE RAD	DIATION AND GAS
		DISPERSION STUDY.	
22.5 0	GRAPH	H OF FLOW X PRESSURE	
2	22.5.1	The Flare manufacturer proposal shall include the	pressure drop versus
		flow rate curve for each flare tip and the minimum f	low rate and pressure
		for safe burning and for smokeless burning Ringe	elmann 1 (continuous
		case).	
2	22.5.2	The proposal shall include the Gas Flowrate x P	ressure curve for the
		Turn-down control system, indicating the cor	ntrol valves opening
		pressures and flow, the flow rates per stage, the n	ninimum flow rate and
		minimum pressure for safe burning and for smokel	ess burning.
22.6 F	PURGI	NG	
2	22.6.1	The minimum purging gas flow rates shall be indic	cated for the high and
		low-pressure system, as well as the minimum	requirements to be
		complied with by this mentioned gas.	
22.7 5	STRES	SES	
2	22.7.1	The weight of the various components of the system	n shall be reported for
		the tower and Unit structural designing purposes.	
2	22.7.2	The magnitude of the thrust effect caused by the	discharge of the low
		and high-pressure gas shall also be indicated.	
 Դეо_⊓	יי⊐ועור	SIONS	
22.0 L			

	TE	CHNICAL SPECIFICATION	[№] I-ET-3010.2D-5412-583	-P4X-001 REV. C
BR		ATAPU 2 AND	SÉPIA 2	SHEET 37 of 47
PETROBRAS	S IIILE:	FLARE S	SYSTEM	INTERNAL
				ESUP
	22.8.1	Manufacturer shall report	the dimensions of the var	ious parts and the
		diameter of the piping with	a preliminary layout drawin	g with tips location.
22.9	MATEF	RIALS		
2	22.9.1	ASTM specifications for th	ne materials used in the va	arious components
		shall be informed.		
22.10	PILOTS	3		
:	22.10.1	Number of required pilots,	and fuel gas consumption.	
22.11	IGNITIO	N		
:	22.11.1	Report of fuel gas and inst	rument air consumption.	
22.12	TURNE	OOWN CONTROL		
:	22.12.1	The turndown control arrar	ngement drawings.	
22.13	MAINT	ENANCE AND ERECTION		
2	22.13.1	Report the weight and size	e of the largest and heavies	st component to be
		transported in one piece to	the end of the tower. MAN	UFACTURER shall
		submit for PETROBRAS	approval the outlines o	it the future flare
			an.	
22.14	NOISE	LEVEL		
	22.14.1	Manufacturer shall indicate	e the noise level for continuo	ous and emergency
		cases. Manufacturer shall	l highlight all points over th	e Unit where noise
		levels are between 82 and	d 90 dB(A) for continuous	burning condition,
		and over 110 dB(A) for em	nergency conditions. Levels	s shall be indicated
		in form of isopleths.		
22.15	HEAT S	SHIELD		
	22.15.1	Heat shield specification	on, location with mate	rial specification,
		dimensions, mesh, materia	al properties.	
22.16	OPERA	TION UNDER STORM CO	NDITIONS	

10		TECHNICAL SPECIFICATION [№] I-ET-3010.2D-5412-583-P4X-001 ^{REV.} C					
BR		ATAPU 2 AND SÉPIA 2	SHEET 38 of 47				
PETROBRAS		FLARE SYSTEM					
			ESUP				
	22	.16.1 Manufacturer shall inform maximum wind conditions f	or stable operation				
		conditions.	s and emergency				
22.17	IN	SPECTION AND TESTS SCHEDULE PLAN					
	22	.17.1 Manufacturer shall provide an inspection and tests sc	hedule plan.				
22.18	INI	DEX OF DRAWINGS AND DOCUMENTS					
	22.18.1 An index of drawings and documents shall be provided.						
22.19	MANUFACTURER PLANT TEST PLAN						
	22	e following:					
	• A complete description of the test facilities (location, capabilities, etc);						
	•	The main technical characteristics of the experimental a	oparatus;				
	•	The composition of the test gas and its Wobbe index cases described in the Datasheet I-FD-3010.2D-5412-583	compared with the -P4X-001;				
	•	The present flare test program.					
22.20	FL	ARE BURNERS ARRANGEMENT					
	22	.20.1 Manufacturer shall provide the flare burners arrangem least a perspective, one top and two side views. All pip structure, and handrails shall be represented.	ent drawing with at es, supports, floor,				
22.21	PI	PING					
	22	.21.1 Provide P&ID, including inlet and outlet connections (rating, size, etc).				
23 FL	AR	E DESIGN TECHNICAL DOCUMENTS					
23.1	Th in t list	e Flare system design shall, as a minimum and in addition to the Flare Material Requisition, be composed of the technic ed.	o the roll described al documents here				
23.2	Те	chnical reports shall reproduce and collect all the inform	nation provided by				

PETROBRAS or not, used during the calculations.

		TE	CHNICAL SPECIFICATION I-ET-3010.2D-5412-583	-P4X-001 REV. C				
BR			ATAPU 2 AND SÉPIA 2	SHEET 39 of 47				
PETROBRA	s	IIIEE.	FLARE SYSTEM					
23.3	Th		ndor shall provide full calculation reports, including radi	ation plots over the				
20.0	un	it. in	puts and outputs for the calculations, utilities consume	ation plots over the				
	ga	s, in	strument air, service air, treated water, power consump	otion)				
23.4	Pro	oced	lures and/or plans specified below shall be submitted to	PETROBRAS for				
2011	ар	prov	val before the beginning of the corresponding activity:					
	•	 Equipment mechanical drawings; 						
	•	In	nspection and test plan;					
	•	Μ	laterial quality certificates;					
	•	W	/elding plan;					
	•	C (s	ertificates of consumable quality with guaranteed prosee AWS);	perty, as required				
	•	W	/elding procedure qualification records;					
	•	W	/elders/welding operators' qualification records;					
	•	R de	eport indicating procedures and inspectors and/ estructive testing operators.	or qualified non-				
23.5	Th	erma	al Radiation Study					
	23	.5.1	A Thermal radiation study shall be supplied to PETRO has to show the maximum radiation fluxes over the indicated in this Technical Specification. All these fluxes shall be part of the Flare Manufacturer guarante	DBRAS. This study process plant, as informed radiation ee.				
	23	.5.2	All these radiation levels have to be informed for, conditions: (i) wind blowing from the bow toward th (ii) wind blowing from the flare tower toward the stern.	at least, two wind e flare tower, and				
	23	.5.3	Flare Tower: The maximum total radiation fluxes alo have to be informed by the Flare Manufacturer at ever will be used in the flare tower structural design and in the heat shield extent.	ong the flare tower y meter. Such data the definition of the				

23.6 Flare Gas Atmospheric Dispersion Study

	Т	ECHNICAL SPECIFICATION [№] I-ET-3010.2D-5412-583	3-P4X-001 REV. C
BR	TITLE	ATAPU 2 AND SÉPIA 2	SHEET 40 of 47
PETROBRA	IS	FLARE SYSTEM	
	22.6.1	Elere des etmoenherie dienersien study for different :	
	23.0.1	weather conditions shall be made in accordance	
		5400-98G-P4X-004	with 1-E 1-3000.00-
		5400 500 1 47 004.	
23.7	Flare	system material temperature study	
	23.7.1	Flare system material temperature study shall p	prove that in any
		operational condition, the pipes, valves, vessels, instru	uments, or any flare
		system material shall work all the time between the m	aterial temperature
		limits.	
23.8	Mean	time between fails report	
	23.8.1	MTBE Calculation Report for operational conditions.	
23.9	Flare	maintenance plan	
	23.9.1	A detailed flare maintenance plan has to be designe	d and proposed by
		the MANUFACTURER and approved by PETROBRA	S.
23.10	Flare	system gas distribution and pressure loss study	
	23.10	.1 The gas pressure loss from the Flare K.O. Drums to	o the flare shall be
		calculated and the gas flow rate distribution among th	e flare stages shall
		be demonstrated for all the opened flare stage combi	nation.
04 T	-070		
24 10	2010/	and inspections routines	
24.1	Tests	on the Flare System are divided into two different types	, namely:
	• Te	ests at Manufacturer's Testing Facility;	
	• Te	ests at Unit.	
24.2	When	it is not possible to perform certain tests at the Testing	Facility, they shall
	be rur	n on the system as erected at Unit.	
24.3	Suppl	ementary tests to be run at Unit may be called for, ev	en if the tests had
	alread	ly been performed at plant.	

24.4 TESTS AT MANUFACTURER PLANT (ACCEPTANCE TESTS)

	TECHNICAL SPECIFICATION	№ I-ET-3010.2D-5412-583	B-P4X-001 REV. C
BR	ATAPU 2 AND	SÉPIA 2	SHEET 41 of 47
PETROBRAS		ELARE SYSTEM	
			ESUP
2	4.4.1 The following tests, inspect witnessed by PETROBRAS	ction and control shall be p S at Manufacturer Plant:	performed and eye-
•	accessories items.	ensional checking of a	n equipment and
•	Control of certificate covering materials comprising the major	g mechanical tests and ch or components of the syste	nemical analysis of m.
•	For non-descriptive examination the Data Sheet, it is enough the cases, when required, the rest	ions predicted by construc to check the respective ce spective tests may be site v	tors or indicated on rtificates. In special witnessed.
•	Performance test on operation Panel.	ns of the Turndown Contro	I System and Flare
2	4.4.2 A PETROBRAS representation	ative shall witness these te	ests.
24.5 P	ERFORMANCE TESTS		
2	4.5.1 A PETROBRAS represent	ative shall witness these te	ests.
24.6 F	LARE RADIATION TEST.		
2	4.6.1 The flare radiation test sha verify the radiation emitted	II be a full performance inc from the Flare Tip.	lustrial scale test to
2	4.6.2 Gas flow rates		
•	The LP 1st stage flare tip sha flow rate described in the Pro 001).	ll be tested with the maxim ocess Datasheet (I-FD-301	um continuous gas 0.2D-5412-583-P4X-
•	The test gas flow rate shall b the radiometers thermal stabi	e maintained for a period lization time.	of 60 seconds plus
2	4.6.3 Gas composition		
•	The gas mixture used in the t 10% tolerance) of the continu the I-FD-3010.2D-5412-583-P42	est shall have the same W Jous gas cases (LP and H X-001.	/obbe Index (with ± IP) as described in

24.6.4 General remarks

- The radiation flux has to be measured at the same point and with the same radiometers. More than one radiometer may be used for simultaneously recording the radiation fluxes from different positions.
- A still camera, as a minimum, or movie camera, at the best, has to be used for recording flame images during the test. (A drone equipped with a recording camera can be used).
- The radiation flux, gas flow rates, gas temperature, wind speed and direction, ambient temperature, relative humidity, and atmospheric pressure shall be stored in real time in a computer and provided to Petrobras for further analysis.

24.7 FLARE IGNITION AND FLAME STABILITY TEST.

24.7.1 The Flare ignition and flame stability test is required to confirm the flare ignition and flame stability when burning high CO2 and low LHV gases.

24.7.2 Gas Flow Rates

- The LP pressure Tips shall be tested with the high CO2 (or lower LHV value) gas flow rate case as described in the I-FD-3010.2D-5412-583-P4X-001.
- The HP pressure tips shall be tested with the high CO2 (or lower LHV value) gas flow rate as described in the I-FD-3010.2D-5412-583-P4X-001.
- The test gas flow rate can be scaled-down using a similar Flare Tip with a small diameter but with the same design gas exit velocity and same gas composition.
- The test gas flow rate shall be maintained for a period of 30 seconds after the flow rate reaches the set point.

24.7.3 Gas composition

 The gas mixture used to be burned in the test shall have the same CO2 and similar LHV of the emergency cases as described in the I-FD-3010.2D-5412-583-P4X-001.

24.7.4 General remarks

- When using a gas assisted tip for burning high CO2 content gases, the test shall be done with the design assist gas flow rate OR the same design Wfg/Wag ratio (for a smaller diameter tip).
- Wfg Flare gas flow rate (kg/h)
- Wag Assist gas flow rate (kg/h)
- A still camera, as a minimum, or movie camera, at the best, has to be used for recording flame images during the test. (A drone equipped with a recording camera can be used).
- Due to the flame low temperature, and low visible light emission during the flame stability test (high CO₂ composition) the manufacturer shall record the test with an Infrared Camera.
- The gas flow rates, gas temperature, wind speed and direction, ambient temperature, relative humidity, and atmospheric pressure shall be stored in real time in a computer and provided to Petrobras for further analysis.

24.8 SMOKELESS BURNING TEST.

24.8.1 The smokeless test shall be a full performance industrial scale test to verify the smokeless performance of the Flare Tip when operating in continuous cases.

24.8.2 Gas Flow Rates

- The LP 1st stage flare tip shall be tested with the continuous gas flow rate described in the I-FD-3010.2D-5412-583-P4X-001.
- The test gas flow rate shall be maintained for a period of 60 seconds

24.8.3 Gas composition

 The gas mixture used to be burned in the test shall have the same Wobbe Index (with ± 10% tolerance) of the continuous gas cases (LP-X) as described in the I-FD-3010.2D-5412-583-P4X-001.

24.8.4 General remarks

- When using a gas assisted tip for burning high CO₂ content gases, the test shall be done with the design assist gas flow rate.
- Smokeless requirement is estimated as Ringelmann 1.0 or less at one flame length from the end of the visible flame. Smokeless combustion shall be determined via EPA Method 9 by a certified smoke reader.
- A still camera, as a minimum, or movie camera, at the best, has to be used for recording flame images during the test. (A drone equipped with a recording camera can be used).
- The gas flow rates, gas temperature, wind speed and direction, ambient temperature, relative humidity, and atmospheric pressure shall be stored in real time in a computer and provided to Petrobras for further analysis.
- The test gas flow rate shall be maintained for a period of 30 seconds after the flow rate reaches the set point.
- The smokeless and radiation performance can be checked in a single test point. In this case the minimum test duration period shall be 60 seconds after the radiometers thermal stabilization time.

24.9 TEST PROCEDURE.

- 24.9.1 The proposed composition of the tests gas mixture shall be informed with the calculated Molecular Weight, Low Heating Value and Wobbe index
- 24.9.2 The external gas source (e.g., Natural Gas) compositional analysis shall be informed and documented.
- 24.9.3 Test gas mixtures for all the test point shall be sampled and sent for compositional analysis in a lab.
- 24.9.4 Test instrumentation shall be properly calibrated, and the documentation of calibration be included in the test report.
- 24.9.5 A Flare test procedure shall be emitted, prior to the test, and submitted for Petrobras approval.

·		TECHNICAL SPECIFICATION [№] I-ET-3010.2D-5412-583	3-P4X-001		
BR		ATAPU 2 AND SÉPIA 2	SHEET 45 of 47		
PETROBRA	ז א		INTERNAL		
			ESUP		
24.10	TES	ST REPORT.			
	24.10.1 A complete test report shall be emitted by the Flare Manufacturer.				
	•	The test report shall contain the following information (as a minimum);			
	•	Test point start and stop timestamps			
	 Test flare gas flowrate Test flare gas temperature Test flare gas compositional analysis Assist gas pressure 				
	Assist gas temperature				
	•	Assist gas flow rate			
	•	Assist gas compositional analysisMeteorological conditions, such as			
	•				
	Ambient temperature				
	Barometric pressure				
	Wind speed and wind direction				
	Relative humidity				
	Visual determination of emissions will be based on EPA Test Method				
	Photograph documentation of the test setup				
	Photograph of the test point				
	•	Radiometer measurements			
	•	Video recordings of each test point shall be sent tog report.	ether with the test		
24.11	11 TESTS AT UNIT				
	24.′	11.1 The acceptance tests on the Flare System shall shall cover all operating systems and possible de	be run at Unit and efects that could be		

tested, by mutual agreement with PETROBRAS.

	TECHNICAL SPECIFICATION № I-ET-3010.2D-5412-583-P4X-001 Rev. C			
BR	ATAPU 2 AND 3	SÉPIA 2	SHEET 47 of 47	
PETROBRAS	FLARE S	■ FLARE SYSTEM		
			ESUP	
25	.1.7 Noise issued by system	when in operation.		
25	.1.8 The Flare System De Specification.	esign in accordance wi	th this Technical	
25	Specification. 1.1.9 The Flare Manufactur everyplace where huma and maintenance or whe radiation level limits.	rer shall guarantee the n presence is a possibilit ⇒n equipment Manufacture	radiation levels y during operation rs requires specific	