		1										
		ES	PECIFIC A	AÇÃO TÉC	CNICA	Nº	ET-3000	.00-1500-	813-PI	EK-(001	
J.E.	<i>]</i> ;;	CLIENTE			- 5	SUB			FOLHA	1	de	21
2000		PROGRA	MA								uc	
PETRO	OBRAS	AREA										
		TÍTULO								NE		
DP	'&Т		MEI	DIDOR SUE	BMARINO	DE VAZÂ	O MONOF	ÁSICA	NP-2 GESTOR:			
									SUB/E			
Microsoft	Word® 201	10 / ET-	3000.00-150	00-813-PEK- -				NO DE VAZ	ÃO MOI	VOF/	ÁSIC	A.docx
	I					REVISÕE						
REV.				DESCRIÇ	ÃO E/O	J FOLH	AS ATING	SIDAS				
0	Este d	ocum	ento can	cela e sub	ostitui o	documer	nto ET-30	00.00-150	00-813	3-P/	۹Z-()01.
1												
1												
1												
1												
1												
		EV. 0	REV. A	REV. B	REV. C	REV. D	REV. E	REV. F	REV.	G	RE	EV. H
DATA		2/2018										
PROJETO EXECUÇÃO		CE JM5										
VERIFICAÇ <i>Î</i>	ÂO E	S26			<u> </u>							
APROVAÇÃ	o U	R6A										
				EDADE DA PETRO	DBRAS, SENDO	PROIBIDA A UT	ILIZAÇÃO FORA E	DA SUA FINALIDA	DE.			
FURMULARIC) PEKTENCEN	I E A PETR	OBRAS N-0381 R	EV. L								

ESPECIFICAÇÃO TÉCNICA	N° ET-3000.00-1500-813-	-PEK-0	001	REV.	0
PROGRAMA		FOLHA	2	de	21
			NP-	-2	
MEDIDOR SUBMARINO DE VAZÃO MONOFÁSICA GESTO SUB/ES/EE				CE	

ÍNDICE

1	INTRODUÇÃO	3
2	REQUISITOS GERAIS	
3	REQUISITOS ESPECÍFICOS AO MEDIDOR TIPO CONE	8
4	REQUISITOS ESPECÍFICOS AO VENTURI	9
5	TRANSMISSORES	.10
6	COMPUTADOR DE VAZÃO	.11
7	REQUISITOS DE PROJETO	.12
8	FACTORY ACCEPTANCE TEST (FAT)	.13
9	QUALIFICAÇÃO	.15
10	DOCUMENTAÇÃO	.16
	XO A. MODELO DE TABELA COM OS DADOS DE ENTRADA PARA	
DIME	ENSIONAMENTO DO MEDIDOR DE VAZÃO	.17
ANE	XO B. EQUAÇÕES	.19

ESPECIFICAÇÃO TÉCNICA	Nº	ET-3000.00-1500-813	-PEK-	001	REV.	0
PROGRAMA			FOLHA	3	de	21
ΤίτυLΟ		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		NP-	-2	
MEDIDOR SUBMARINO	DE V	/AZAO MONOFASICA		GEST		
			i SUB	/ES/EE	:CE/I	ECE I

1 INTRODUÇÃO

Este documento define os requisitos a serem atendidos para o fornecimento de medidores de vazão monofásica do tipo Cone ou Venturi, para medição de gás ou água em equipamentos submarinos.

1.1 Referências e Normas Aplicáveis

1.1.1 Normas e Referências Aplicáveis

É apresentada, a seguir, a lista de normas e referências aplicáveis.

[1] ISO 12213-2:2006	Natural gas - Calculation of compression factor — Part 2: Calculation using molar-composition analysis
[2] ISO 5167-4:2003	Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full — Part 4: Venturi tubes
[3] ISO 5167-5:2016	Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full — Part 5: Cone meters
[4] API Spec 6A:2010	Specification for Wellhead and Christmas Tree Equipment
[5] API Spec 17D:2011	Design and Operation of Subsea Production Systems — Subsea Wellhead and Tree Equipment
[6] API Spec 17F:2017	Standard for Subsea Production Control Systems
[7] ISO 2186:2007	Fluid flow in closed conduits - Connections for pressure signal transmissions between primary and secondary elements
[8] ASTM A269 Latest Revision	Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service
[9] VIM 2012	Vocabulário Internacional de Metrologia: Conceitos fundamentais e gerais e termos associados (VIM 2012). Duque de Caxias, RJ: INMETRO, 2012.
[10] ET-3000.00-1500-813-PEK-002 Rev. 0	Qualificação de Medidor Submarino de Vazão Monofásica

	ESPECIFICAÇÃO TÉCNICA	[№] ET-3000.00-1500-813	-PEK-C	01	REV.	0
BR	PROGRAMA		FOLHA	4	de	21
PETROBRAS	Τίτυιο	~		NP-	-2	
PETROBRAS	MEDIDOR SUBMARINO D	DE VAZAO MONOFASICA	1	GEST		
			SUB/I	ES/EE	CE/E	CE

[11] ISO 15156-3:2015	Petroleum and natural gas industries
	 Materials for use in H2S-containing
	environments in oil and gas production
	 Part 3: Cracking-resistant CRAs
	(corrosionresistant alloys) and other
	alloys

1.2 Siglas, Definições e Convenções

1.2.1 Siglas

FAT	Factory Acceptance Test
FS	Full Scale – Valor Superior do Range
PLC	Programmable Logic Controller
PSL	Product Specification Level, conforme definições da API Spec 17D:2011 [5]
RWP	Rated Working Pressure, conforme definições da API Spec 17D:2011 [5]
TPT	Transmissor de Pressão e Temperatura

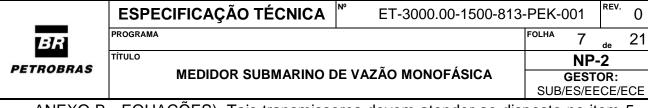
1.2.2 Definições

CERTIFICADO DE	Documento no qual uma CERTIFICADORA atesta que determinado componente / produto teve seu processo de
QUALIFICAÇÃO	QUALIFICAÇÃO concluído com êxito.
CERTIFICADORA	Organismo de Certificação de Produto
Classe de Temperatura	Conforme definições da Tabela 2 da API Spec 6A:2010 [4].
Computador de Vazão	Equipamento que calcula a vazão tendo como dados de entrada as propriedades do fluido e medições de pressão, temperatura
	e pressão diferencial no elemento primário.
CONTRATADA	Empresa responsável por fornecer o medidor submarino de vazão monofásica, bem como responsável por atender todos os requisitos desta especificação técnica.
Condições de Referência	20°C e 101,325 kPa abs.
Condição Local	Refere-se as variáveis ou propriedades termodinâmicas nas condições de pressão e temperatura que o medidor de vazão está operando.
Deve (e suas conjugações)	Caracteriza um requisito mandatório.
Elemento Primário	É a restrição ao fluxo, que gera uma pressão diferencial.
Medidor de Vazão do tipo Cone	Medidor de vazão monofásica cujo elemento primário é definido pela ISO 5167-5:2016 [3].
Medidor de Vazão do tipo Venturi	Medidor de vazão monofásica cujo elemento primário é definido pela ISO 5167-4:2003 [2].
Medidor de Vazão	Medidor de vazão do tipo Cone ou Medidor de vazão do tipo Venturi

ESPECIFICAÇÃO TÉCNICA	N° ET-3000.00-1500-813	-PEK-	001	REV.	0
PROGRAMA		FOLHA	5	de	21
Τίτυιο			NP-	2	
MEDIDOR SUBMARINO D	DE VAZAO MONOFASICA		GEST		
		SUB	/ES/EE	CE/E	CE

Pressão Estática	É o valor da pressão absoluta interna (fluido) à montante do Elemento Primário.
QUALIFICAÇÃO	Processo no qual o projeto de um componente / produto é validado através de verificação de desempenho em um protótipo. O protótipo necessita ter características de materiais e fabricação idênticas ao do componente / produto a ser fabricado em série.
Range	Faixa dos valores que o objeto da medição pode assumir (ex.: Range de temperatura: de -18°C a 121°C).
Rangeabilidade	É a razão entre o valor superior e o valor inferior do <i>range</i> (ex.: <i>Range</i> : 5 a 40mBar, Rangeabilidade: 8:1).
Re	Número de Reynolds
Span	Diferença algébrica entre os valores superior e inferior do range.
Tomadas de Pressão	Nesta Especificação, o termo Tomadas de Pressão se refere as conexões e <i>tubings</i> , que ligam o transmissor de pressão diferencial ao corpo do medidor submarino de vazão monofásica para determinar a pressão diferencial no elemento primário.
Transmissor	Conjunto do elemento sensor e eletrônica que interpreta, determina a medida e provê a interface de saída ou comunicação de dados.
Valor Nominal de uma Variável	Valor da variável mais provável de ocorrer (vazão, pressão e temperatura).

1.2.3 Convenções adotadas neste documento


Termos	Todos os termos de metrologia sublinhados nesta especificação
Sublinhados	técnica são definidos no VIM 2012 [9].

ESPECIFICAÇÃO TÉCNICA	ET-3000.00-1500-813	-PEK-0	01	REV.	0
PROGRAMA		FOLHA	6	de	21
TÍTULO			NP.	-2	
MEDIDOR SUBMARINO D	E VAZAO MONOFASICA	1			CF
	PROGRAMA TÍTULO	PROGRAMA	PROGRAMA FOLHA TÍTULO MEDIDOR SUBMARINO DE VAZÃO MONOFÁSICA	PROGRAMA FOLHA 6 TÍTULO MEDIDOR SUBMARINO DE VAZÃO MONOFÁSICA GEST	ESPECIFICAÇÃO TECNICA ET-3000.00-1500-813-PEK-001 PROGRAMA FOLHA 6 de

2 REQUISITOS GERAIS

- 2.1 O Medidor de Vazão deverá ser projetado utilizando-se os dados de entrada a serem fornecidos pela PETROBRAS. O ANEXO A contém um modelo de tabela com os dados de entrada.
- 2.2 Cada Medidor de Vazão deverá ter seu Coeficiente de Descarga (C_d) determinado em testes de Vazão, em laboratório acreditado pelo INMETRO ou laboratório internacionalmente reconhecido, utilizando gás natural, ar ou água. As vazões utilizadas no teste deverão cobrir toda a faixa de Re especificada na requisição de materiais. A incerteza expandida do C_d em todo o range de vazão deverá ser menor ou igual a +-0,5% com 95% de probabilidade de abrangência.
- 2.3 O Medidor de Vazão deverá ser fornecido com Rangeabilidade de Vazão de 10:1, ou maior.
- 2.4 O Medidor de Vazão deverá ser fornecido com dois transmissores de pressão diferencial (redundância) com cada transmissor tendo um par exclusivo de tomadas de pressão. Os requisitos para o transmissor de pressão diferencial se encontram no item 5.
- 2.5 As tomadas de pressão diferencial para os Medidor de Vazão de gás deverão ter o menor comprimento possível, sem curvas ou derivações, e ser do tipo wall tap (tanto a de alta quanto a de baixa). O diâmetro interno de todas as tomadas de pressão deverão ser maior ou igual a 11mm.
- **2.5.1** Alternativamente, é admitido a utilização de selos de diafragma (substituindo as tomadas de pressão).
- 2.6 O posicionamento e orientação das tomadas de pressão e do transmissor de pressão diferencial devem estar de acordo com as prescrições dos itens 4.5, 5 e 6 da norma ISO 2186:2007 [7], considerando a posição final do Medidor de Vazão no equipamento submarino. Em especial:
- 2.6.1 Para Medidor de Vazão de gás, deve-se ter especial atenção para que o posicionamento do transmissor de pressão e o arranjo de tomadas de pressão consiga drenar por gravidade qualquer líquido que possa se acumular¹.
- 2.6.2 Para Medidor de Vazão de água ou líquido, deve-se buscar um arranjo de tomadas de pressão que não favoreça o acúmulo de sólidos que possam estar presentes no escoamento.
- 2.7 Nas aplicações de gás, o Medidor de Vazão deverá ser fornecido com transmissor de pressão e transmissor de temperatura a montante do elemento primário. Tais instrumentos serão utilizados na determinação da massa específica do gás local (ver

Operações típicas de limpeza para intervenção incluem circulação de água. Desta forma, a construção do medidor submarino de vazão monofásica deve favorecer a drenagem da água nestes casos.

ANEXO B - EQUAÇÕES). Tais transmissores devem atender ao disposto no item 5. Estes transmissores podem estar integrados no corpo do medidor ou em separado.

- 2.8 O Medidor de Vazão deverá ser fornecido com Computador de Vazão, atendendo ao disposto no item 6.
- **2.9** O Medidor de Vazão deverá ser QUALIFICADO, atendendo ao disposto no item 9.
- **2.10** O Medidor de Vazão deverá ser submetido a um FAT, atendendo ao disposto no item 8.
- 2.11 A documentação do medidor de vazão deverá atender ao disposto no item 10.

- <u></u> -	ESPECIFICAÇÃO TÉCNICA	ET-3000.00-1500-813	-PEK-00)1 R	^{■v.} 0
BR	PROGRAMA		FOLHA	8 de	21
PETROBRAS	Τίτυιο	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		NP-2	
PETHODHAS	MEDIDOR SUBMARINO D	DE VAZAO MONOFASICA	_	ESTOF	
			SUB/E	S/EEC	E/ECE

3 REQUISITOS ESPECÍFICOS AO MEDIDOR TIPO CONE

- 3.1 O Medidor de Vazão do tipo Cone deverá ser projetado e fabricado atendendo aos requisitos da ISO 5167-5:2016 [3], porém com as seguintes exceções:
- 3.1.1 A tomada de pressão de baixa não deve ser pelo interior do cone, conforme ilustrado no item 4 da ISO 5167-5:2016 [3]. Deve-se utilizar tomadas do tipo wall tap, conforme item 2.5 e Figura 1.

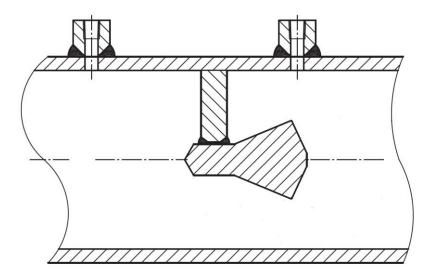
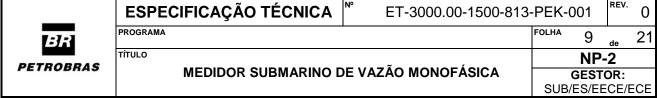



Figura 1 – Esquema de um medidor tipo cone com tomadas de pressão tipo wall tap

- **3.1.2** O diâmetro das tomadas de pressão deve ser conforme o item 2.5.
- 3.2 O Medidor de Vazão do tipo Cone deverá ser instalado respeitando-se os requisitos de instalação contidos no item 6 ISO 5167-5:2016 [3], com atenção especial aos requisitos de trecho reto de tubulação.
- 3.3 O Medidor de Vazão do tipo Cone e a tubulação imediatamente à montante e à jusante deverão ter o mesmo diâmetro interno. Deve-se ter especial atenção para atender ao disposto nos itens 6.3.1 (Circularity and Cylindricality of the pipe) e 6.3.2 (Roughness of the upstream and downstream pipe) da norma ISO 5167-5:2016 [3].

4 REQUISITOS ESPECÍFICOS AO VENTURI

- **4.1** O Medidor de Vazão do tipo Venturi deverá ser projetado, construído e instalado em total concordância com a norma ISO 5167-4:2003 [2]. As exceções à norma são:
- **4.1.1** Não deve ser utilizado tomadas de pressão no arranjo triple-T.
- **4.1.2** O diâmetro das tomadas de pressão deve ser conforme o item 2.5.
- 4.2 Deverão ser respeitados os trechos retos de tubulação requeridos pela norma ISO 5167-4:2003 [2]. Não serão aceitas interpolações do fator Beta para determinar o tamanho do trecho reto. O fornecedor deverá utilizar o valor de Beta subseqüente da Tabela 1 da referida norma (valor acima mais próximo).
- **4.2.1** É admitido o uso dos valores de trecho reto da coluna B da Tabela 1 da ISO 5167-4:2003 [2].
- 4.3 O Medidor de Vazão do tipo Venturi e a tubulação imediatamente à montante e à jusante deverão ter o mesmo diâmetro interno. Deve-se ter especial atenção para atender ao disposto nos itens 6.4.1 (Circularity and Cylindricality of the pipe), 6.4.2 (Roughness of the upstream pipe) e 6.4.3 (Alignment of the classical Venturi tube) da norma ISO 5167-4:2003 [2].

·	ESPECIFICAÇÃO TÉCNICA	[№] ET-3000.00-1500-813-	-PEK-00	1 R	ev. 0
BR	PROGRAMA		FOLHA ,	10 _d	, 21
PETROBRAS	ΤίτυLο	~		NP-2	1
PETROBRAS	MEDIDOR SUBMARINO D	E VAZAO MONOFASICA	SUB/ES	STO	
	I		J JUD/E	ン/ L L し	レ/LOL

5 TRANSMISSORES

- **5.1** Requisitos para o Transmissor de Pressão Diferencial:
- 5.1.1 Os transmissores deverão ser calibrados em fábrica ou em laboratório, utilizando a pressão estática nominal em ambas as tomadas (high pressure calibration)² e na mesma posição de instalação final do medidor de vazão monofásica. Os padrões de pressão utilizados deverão estar calibrados por laboratório acreditado pelo INMETRO ou laboratório internacionalmente reconhecido.
- **5.1.2** Os transmissores deverão ter <u>incerteza expandida</u> de ±0,5% do *span* com 95% de <u>probabilidade de abrangência</u>.
- **5.2** Requisitos para o Transmissor de Pressão (estática) (ver item 2.7):
- 5.2.1 Os transmissores deverão ser calibrados em fábrica ou em laboratório, utilizando o range de pressão estática especificada em projeto. Os padrões de pressão utilizados deverão estar calibrados por laboratório acreditado pelo INMETRO ou laboratório internacionalmente reconhecido.
- **5.2.2** Os transmissores deverão ter <u>incerteza expandida</u> de ±0,2% FS com 95% de <u>probabilidade de abrangência</u>.
- **5.3** Requisitos para o Transmissor de Temperatura (ver item 2.7):
- 5.3.1 Os transmissores deverão ser calibrados em fábrica ou em laboratório, utilizando o range de temperatura especificada em projeto³. Os padrões de temperatura utilizados deverão estar calibrados por laboratório acreditado pelo INMETRO ou laboratório internacionalmente reconhecido.
- **5.3.2** Os transmissores deverão ter <u>incerteza expandida</u> de ±1°C com 95% de <u>probabilidade de abrangência</u>.
- **5.3.3** É vedado o uso de termopoço. O transmissor de temperatura (seu elemento sensor) deve ser do tipo *wall flush*.
- **5.4** É admitido o uso de TPT, desde que atenda integralmente aos itens 5.2 e 5.3.

c

Exemplo: Pressão estática nominal: 120 Bar – Range do instrumento: 0 a 500 mBar => Calibração: Tomada de alta: variar entre 120 Bar a 120,5 Bar – Tomada de baixa: fixa em 120 Bar.

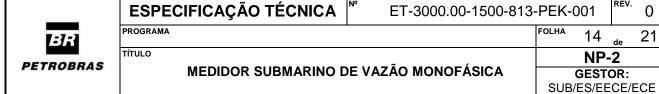
³ Não confundir range de temperatura especificada em projeto com a Classe de Temperatura (item 7.1). Neste item, range de temperatura se refere aos valores especificados para escoamento (ver dados de entrada do ANEXO A).

	ESPECIFICAÇÃO TÉCNICA	ET-3000.00-1500-813	-PEK-001	^{кеу.} О
BR	PROGRAMA		FOLHA 11	_{de} 21
PETROBRAS	Τίτυιο		NP-	-2
PETHODHAS	MEDIDOR SUBMARINO D	E VAZAO MONOFASICA	GEST(SUB/ES/EE	

6 COMPUTADOR DE VAZÃO

- 6.1 O Computador de Vazão faz parte do escopo de fornecimento. Deverão ser fornecidos Computadores de Vazão na quantidade necessária para atender a todos os Medidores de Vazão instalados no equipamento submarino.
- 6.1.1 É admitido implementar as equações de vazão do ANEXO B diretamente em PLC ou supervisório do sistema de controle submarino. Neste caso, o operador do sistema deve ter permissão para alterar / atualizar as propriedades do fluido pelo sistema supervisório (e.g.: composição do gás, massa específica da água, etc...).
- 6.2 O Computador de Vazão para aplicações de gás deverá computar o coeficiente de compressibilidade do gás (Z_{op} e Z_b) usando a equação AGA8-92DC, conforme definido na ISO 12213-2:2006 [1] método de caracterização detalhada, usando a composição molar do gás.
- **6.3** O Computador de Vazão deverá calcular e disponibilizar para leitura as seguintes variáveis:
 - a. Vazão Volumétrica, em condições de referência, em Sm³/h (m³/h para água);
 - b. Vazão Mássica, em kg/h;
 - c. Massa específica do gás, em condição local, em kg/m³;
 - d. Massa específica do gás, em condições de referência, em kg/m³;
 - e. Fator de Compressibilidade do Gás com Condição Local (Z_{op});
 - f. Fator de Compressibilidade do Gás em Condições de Referência (Z_b);
- 6.4 Os transmissores de pressão estática utilizados deverão prover a pressão absoluta, considerando o efeito da profundidade do local de instalação na medição (para medidores de gás, conforme item 2.7).
- 6.5 O fornecedor poderá optar por utilizar uma tabela de C_d versus Re no computador de vazão (ao invés de utilizar C_d médio), para atualizar o C_d automaticamente com o ponto de operação. Esta implementação poderá ser necessária para atingir o critério de incerteza do item 2.2 (à depender da faixa de Re).
- 6.6 Deverá ser confirmado com a PETROBRAS a necessidade de o sistema de controle possuir, no *Topside*, portas físicas de saída para as variáveis ΔP, P_{op}, T_{op}, para Computadores de Vazão externos. Esta demanda pode ser necessária nos caso de sistemas em que os Medidores de Vazão de gás sejam usados em medição de apropriação. A definição das variáveis supracitadas se encontra no ANEXO B.

ESPECIFICAÇÃO TÉCNICA	№ ET-3000.00-1500-813	-PEK-	001	REV.	0
PROGRAMA		FOLHA	12	de	21
Τίτυιο			NP-	-2	
MEDIDOR SUBMARINO D	DE VAZAO MONOFASICA		GEST		-CE


7 REQUISITOS DE PROJETO

- 7.1 O Medidor de Vazão deve ser seu projeto mecânico e fabricação conforme a norma API Spec 17D:2011 [5]. Deverá ser empregado o mesmo material para o elemento primário e o spool (medidor tipo Cone).
- 7.1.1 Medidor de Vazão de gás deve ser especificado com PSL3G, conforme a norma API Spec 17D:2011 [5], e classe de temperatura U (ou mais abrangente, de forma a atender o range de temperatura que o equipamento será submetido), conforme API Spec 6A:2010 [4].
- **7.1.2** Medidor de Vazão de água deve ser especificado com a mesma especificação PSL e classe de temperatura especificada para o equipamento em que será instalado.
- **7.2** Os transmissores de pressão diferencial, pressão estática e temperatura devem atender aos requisitos da norma API Spec 17F:2017 [6].
- 7.3 Todas as tomadas de pressão deverão ser do tipo sem-costura ASTM A269 [8]. O material das tomadas de pressão deve ser conforme a Tabela A.7 da ISO 15156-3:2015 [11].

·	ESPECIFICAÇÃO TÉCNICA	ET-3000.00-1500-813	-PEK-00	1	. 0
BR	PROGRAMA		FOLHA ,	13 _{de}	21
PETROBRAS	TÍTULO		l	NP-2	
PETHODHAS	MEDIDOR SUBMARINO D	E VAZAO MONOFASICA	SUB/ES	ESTOR: S/EECE	

8 FACTORY ACCEPTANCE TEST (FAT)

- 8.1 O programa do FAT deverá ser realizado para todos os Medidores de Vazão fornecidos.
- **8.2** O programa do FAT deverá cobrir, pelo menos, os seguintes aspectos:
 - a. Demonstrar que o Medidor de Vazão é totalmente funcional, com todas as funcionalidades descritas nesta especificação;
 - b. Demonstrar que as interfaces mecânicas, elétricas e de comunicação estão corretas;
 - c. Demonstrar que todas as etapas de fabricação foram concluídas e que os certificados de testes (e.g. calibração em *flowloop*) estão emitidos;
 - d. Demonstrar que não há erros de montagem/fabricação;
- 8.3 O programa de FAT deve ser baseado nas disposições do item 9.3 da API Spec 17F:2017 [6], com as seguintes clarificações:
- 8.3.1 Os seguintes itens da API Spec 17F:2017 [6] não se aplicam: 9.3.3, 9.3.5, 9.3.6, e 9.3.9 (este último é aplicável ao FAT/SIT do sistema de controle como um todo, não ao FAT do Medidor de Vazão).
- 8.3.2 O Environmental Stress Screening, especificado no item 9.3.7 da API Spec 17F:2017 [6], pode ser realizado nos transmissores de pressão antes de serem montados no medidor submarino de vazão monofásica.
- 8.3.3 O Communications System Tests, item 9.3.8 da API Spec 17F:2017 [6], deve ser conduzido de forma a demonstrar que os transmissores estão com a interface de comunicação operando (funcional). Para este teste, é aceitável ter o transmissor se comunicando ininterruptamente por 10 minutos sem erros de comunicação. Todavia, a CONTRATADA pode propor procedimento alternativo.
- **8.4** Além do disposto no item 9.3 da API Spec 17F:2017 [6], deverão ser realizados no FAT:
- **8.4.1** Teste funcional do Computador de Vazão. Para este teste:
- 8.4.1.1 Deverá ser verificado se as equações do ANEXO B estão implementadas corretamente. Este teste consiste em verificar a vazão calculada para uma série de entradas (ΔP, P_{op}, T_{op}, Composição Molar do Gás). Utilizar no mínimo 5 pontos de verificação.
- 8.4.1.2 Deverá ser verificado se os cálculos de compressibilidade do gás estão conforme a norma ISO 12213-2:2006 [1]. Sugere-se utilizar as tabelas do Anexo C da norma ISO 12213-2:2006 [1] para esta verificação.
- **8.4.2** Teste de vazão, conforme item 2.2, para Calibração do coeficiente de descarga (C_d). Deve-se atender ao disposto no item 7 da ISO 5167-5 [3], tanto para Medidor

de Vazão do tipo Cone quanto para Medidor de Vazão do tipo Venturi. Adicionalmente, deverá se realizada análise de incerteza para a calibração, conforme o disposto no item 7.6 da ISO 5167-5 [3].

0

21

14

NP-2

GESTOR:

- 8.4.3 Deverá ser conduzido o levantamento dimensional do Medidor de Vazão.
- 8.4.3.1 Para Medidor de Vazão do tipo Cone, o levantamento dimensional deve ser realizado conforme o disposto no item 5.2 da ISO 5167-5:2016 [3].
- 8.4.3.2 Para Medidor de Vazão do tipo Venturi, o levantamento dimensional deve ser realizado conforme o disposto no item 5.2 da ISO 5167-4:2003 [2].
- 8.4.3.3 O levantamento dimensional deverá ser documentado. Em especial, os valores medidos de D e d devem ser configurados no Computador de Vazão (em oposição à utilização dos valores especificados).
- 8.4.3.4 A incerteza de medição no levantamento deste dimensional, bem como sua probabilidade de abrangência, deverão ser documentadas.

ESPECIFICAÇÃO TÉCNICA	N° ET-3000.00-1500-813-	PEK-	001	REV.	0
PROGRAMA		FOLHA	15	de	21
Τίτυιο			NP-	-2	
MEDIDOR SUBMARINO D	DE VAZAO MONOFASICA		GEST /ES/EF		-0-

9 QUALIFICAÇÃO

- 9.1 O Medidor de Vazão fornecido deve ser submetido a um processo de QUALIFICAÇÃO, atendendo ao disposto na ET-3000.00-1500-813-PEK-002 Rev. 0 [10].
- 9.2 A unidade de Medidor de Vazão (identificada pelo seu número de série), submetida ao processo de QUALIFICAÇÃO, não poderá ser utilizada posteriormente (i.e. é vedado o fornecimento de unidades que foram submetidas ao processo de QUALIFICAÇÃO).
- 9.3 QUALIFICAÇÕES realizadas anteriormente serão aceitas apenas se todas as condições do item 3 da ET-3000.00-1500-813-PEK-002 Rev. 0 [10] forem satisfeitas. Cabe ressaltar que a QUALIFICAÇÃO anterior deve cobrir o range das variáveis do presente projeto, conforme item 2.3 da ET-3000.00-1500-813-PEK-002 Rev. 0 [10].

ESPECIFICAÇÃO TÉCNICA	ET-3000.00-1500-813	-PEK-(001	REV.	0
PROGRAMA		FOLHA	16	de	21
MEDIDOR SUBMARINO DE VAZÃO MONOFÁSICA			NP-	-2	
			GEST(CF

10 DOCUMENTAÇÃO

- **10.1** Devem ser apresentados, no mínimo os seguintes documentos:
 - a. Folha de Dados de cada Medidor de Vazão, com o dimensional e dados de calibração (Cd, β , D, α_{PE} , range calibrado de fábrica do Transmissor de pressão diferencial);
 - b. Especificações e Procedimentos de Testes;
 - c. Todos os Relatórios de Testes;
 - d. Todos os Desenhos Mecânicos;
 - e. Memórias de Cálculo do dimensionamento do Medidor de Vazão;
 - f. Tabela relacionando o TAG no supervisório do sistema de controle com o número de série do Medidor de Vazão e o número de série dos Transmissores (pressão diferencial, pressão e temperatura);
 - g. Manual de Configuração e Operação do Computador de Vazão;
 - h. Tabela das variáveis disponíveis no topside para integração com outros sistemas.

BR
PETROBRAS

ESPECIFICAÇÃO TÉCNICA	[№] ET-3000.00-1500-813-	·PEK-(001	REV.	0
PROGRAMA		FOLHA	17	de	21
Τίτυιο	~		NP-	2	
MEDIDOR SUBMARINO DE VAZÃO MONOFÁSICA			GEST		-0-

ANEXO A.MODELO DE TABELA COM OS DADOS DE ENTRADA PARA DIMENSIONAMENTO DO MEDIDOR DE VAZÃO

Na Tabela 1 são apresentados os dados de entrada para dimensionamento do Medidor de Vazão para gás. A Tabela 2 contém a composição molar do gás.

Tabela 1 - Dados de entrada para dimensionamento do Medidor de Vazão para gás

Parâmetro	Mínimo	Máximo	Nominal	Unidade
Vazão				m³/h
				(Condições
				de
				Referência)
Pressão				BAR abs
Temperatura				°C
k				-
Z _{op}				-
Z _b				-
Viscosidade				cР
Re				-

Tabela 2 - Composição Molar do Gás

Componente	Fração Molar [%]
C_1	
C_2	
C ₃	
C ₁ C ₂ C ₃ i-C ₄ n-C ₄	
n-C ₄	
i-C ₅	
n-C ₅ C ₆ C ₇ C ₈ C ₉	
C ₆	
C ₇	
C ₈	
C ₉	
C ₁₀₊ N ₂ CO ₂	
N_2	
CO ₂	
He	
O ₂	
O ₂ H ₂ O	
H₂S	
H_2	
CO	
Ar	

ESPECIFICAÇÃO TÉCNICA	ET-3000.00-1500-813	-PEK-	001	REV.	0
PROGRAMA		FOLHA	18	de	21
πίτυιο MEDIDOR SUBMARINO DE VAZÃO MONOFÁSICA		NP-2			
		GESTOR:			
		SUB/ES/EECE/ECE			

Na Tabela 3 são apresentados os dados de entrada para dimensionamento do Medidor de Vazão para água.

Tabela 3 - Dados de entrada para dimensionamento do Medidor de Vazão para água.

Parâmetro	Mínimo	Máximo	Nominal	Unidade
Vazão				m ³ /h
Pressão				BAR abs
Temperatura				°C
Massa				kg/m ³
Específica				_
Viscosidade				cР
Re				-

A definição dos parâmetros citados nas tabelas acima estão no ANEXO B.

	ESPECIFICAÇÃO TÉCNICA	[№] ET-3000.00-1500-813	-PEK-00	1
BR	PROGRAMA		FOLHA	19
PETROBRAS	Τίτυιο	~	1	NF
PETHOBNAS	MEDIDOR SUBMARINO D	E VAZAO MONOFASICA	GE	ES

ANEXO B.EQUAÇÕES

Massa Específica para gás:

$$\rho_{op} = \frac{MM \cdot P_{op}}{T_{op} \cdot Z_{op} \cdot R} \tag{B.1}$$

GESTOR: SUB/ES/EECE/ECE

Massa Específica para água:

Um valor a ser inserido no computador de vazão. Deve ser possível alterar/atualizar a massa específica no Computador de Vazão.

Fator Beta para Cone:

$$\beta = \sqrt{\frac{D^2 - d^2}{D^2}} \tag{B.2}$$

Fator Beta para Venturi:

$$\beta = \frac{d}{D} \tag{B.3}$$

Fator de expansão do gás para Cone⁴ (no caso de água Y=1):

$$Y = 1 - (0.649 + 0.696 \cdot \beta^4) \cdot \frac{\Delta P}{k P_{op}}$$
(B.4)

Fator de expansão do gás para Venturi⁵ (no caso de água Y=1):

$$Y = \sqrt{\left(\frac{k \cdot \tau^{2/k}}{k - 1}\right) \cdot \left(\frac{1 - \beta^4}{1 - \beta^4 \cdot \tau^{2/k}}\right) \cdot \left(\frac{1 - \tau^{(k - 1)/k}}{1 - \tau}\right)}$$
(B.5)

Conforme item 5.6 da norma ISO 5167-5:2016 [3].

⁵ Conforme item 5.6 da norma ISO 5167-4:2003 [2].

ESPECIFICAÇÃO TÉCNICA	N° ET-3000.00-1500-813-	-PEK-(001	REV.	0
PROGRAMA		FOLHA	20	de	21
Τίτυιο		NP-2			
MEDIDOR SUBMARINO DE VAZÃO MONOFÁSICA		GESTOR:			CF

$$\tau = \frac{P_2}{P_{op}} \tag{B.6}$$

Equação de vazão volumétrica local

$$Q_{op} = C_d \cdot F_a \cdot Y \cdot \frac{\pi}{4} \frac{\beta^2 \cdot D^2}{\sqrt{1 - \beta^4}} \sqrt{\frac{2 \cdot \Delta P}{\rho_{op}}}$$
(B.7)

Equação de ajuste da vazão volumétrica de gás, para as Condições de Referência e para m³/h:

$$Q_{std} = Q_{op} \cdot \frac{P_{op}}{P_b} \cdot \frac{T_b}{T_{op}} \cdot \frac{Z_b}{Z_{op}} \cdot 3600$$
 (B.8)

Equação de ajuste da vazão volumétrica de água, para m³/h:

$$Q_{std} = Q \cdot 3600 \tag{B.9}$$

Aonde:

α_{PE} = Coeficiente de expansão térmica do material, a ser utilizado no cálculo do F_a

β = Fator Beta

 ρ_{op} = Massa específica do fluido em Condição Local [kg/m³]

C_d = Coeficiente de Descarga

D = Diâmetro interno do Spool [m]

d = Diâmetro do cone (para o Cone) ou diâmetro da garganta (para o Venturi) [m]

F_a = Fator de Expansão Térmica dos Materiais

k = Expoente isoentrópico, a ser utilizado no cálculo do Y

MM = Massa Molar do gás [kg/kmol]

ΔP = Diferencial de pressão gerado pelo Elemento Primário [Pa]

P_b = Pressão de Referência do gás (Condições de Referência) [Pa absoluta]

P_{op} = Pressão Estática de Operação a montante do medidor [Pa absoluta]

P₂ = Pressão Estática de Operação a jusante do medidor [Pa absoluta]

Q_{op} = Vazão volumétrica em Condição Local [m³/s]

ESPECIFICAÇÃO TÉCNICA	N° ET-3000.00-1500-813	-PEK-	001	REV.	0
PROGRAMA		FOLHA	21	de	21
TÍTULO MEDIDOR SUBMARINO DE VAZÃO MONOFÁSICA		NP-2			
		GESTOR:			
		SUB	/ES/EE	ECE/E	ECE

Q_{std} = Vazão volumétrica nas Condições de Referência [Sm³/h – m³/hora nas Condições de Referência].

R = Constante dos gases = 8314,51 [Pa.m³/kmol.K]

T_{op} = Temperatura de operação a montante do medidor [K]

T_b = Temperatura de referência do gás (Condições de Referência) [K]

Y = Fator de Expansão do Gás. Para água Y=1.

Z_b = Fator de compressibilidade do gás nas Condições de Referência, determinado pela equação AGA8-92DC (ver ISO 12213-2:2006 [1])

Z_{op}= Fator de compressibilidade do gás em Condição Local, determinado pela equação AGA8-92DC (ver ISO 12213-2:2006 [1])

Considerações sobre Fa:

Fator de Expansão Térmica dos Materiais pode ser necessário quando o medidor de vazão opera em condições de temperatura bem distintas da temperatura que foi realizado o levantamento dimensional, especificado no item 8.4.3. Este fator deve ser proposto pelo projetista do medidor de vazão, se este julgar apropriado incluir o fator.